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ABSTRACT 
Background: Nitric oxide (NO) have a dual action in mouse oocyte meiotic maturation 
which depends on its concentration, but the mechanisms by which it influences oocyte 
maturation has not been exactly clarified. In this study different signaling mechanisms 
which exist for in vitro maturation of meiosis was examined in cumulus cell-enclosed 
oocytes (CEOs) after injection of pregnant mare's serum gonadotropin (PMSG) to immature 
female mice. 
Methods: The CEOs were cultured in spontaneous maturation and hypoxanthine (HX) 
arrested model.  
Results: Sodium nitroprusside (SNP, an NO donor, 10mM) delayed germinal vesicle 
breakdown (GVBD) significantly during the first 5 hrs of incubation and inhibited the 
formation of first polar body (PB1) at the end of 24 hrs of incubation. SNP (10-5M) 
stimulated the meiotic maturation of oocytes significantly by overcoming the inhibition of 
HX. Sildenafil (a cGMP stimulator, 100 nM), had a significant inhibitory effects on both 
spontaneous meiotic maturation and HX-arrested meiotic maturation. Forskolin (an 
adenylate cyclase stimulator, 6µM) and SNP (10mM) had the same effects on GVBD. 
Forskolin reversed the SNP (10-5M) stimulated meiotic maturation.  
Conclusion: These results suggest that differences in pathways are present between SNP-
inhibited spontaneous meiotic maturation and SNP-stimulated meiotic maturation in mouse 
oocytes 
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INTRODUCTION 

The NO-generating system has been demonstrated 
in the reproductive tract of several mammalian 
species, and plays a role in a variety of 
reproductive function such as steroidogenesis, 
pregnancy, folliculogenesis, and tissue 
remodeling (1,2,3). 
In several reports it has been demonstrated that 
the Nw-nitro-L-arginine methyl ester (L-NAME, 
an NO inhibitor) significantly suppressed the 
resumption of meiosis which was reversed by 
addition of sodium nitroprusside (SNP) to the 
culture (4, 5, 6, 7, 8, 9). Also it has been 
demonstrated that aminoguanidine (AG, an NO 
inhibitor) decreased cGMP production in 
preovulatory follicles addition of an NO donor 
(SNAP) blocked this suppression (9). These 
results indicated that NO produced a high 
concentration of cGMP. The cGMP has an 

important role in maintaining the meiotic arrest of 
oocytes. It is well established that NO actions on 
endothelial cells, smooth muscle cells and 
acrosome reaction are mediated via soluble 
guanylate cyclase (sGC) and cGMP (10, 11, 12) 
but the mechanisms of NO on oocyte maturation 
have not been determined. NO with a variety of 
biological functions does not act just by changing 
cGMP level, it can also mediates its effect through 
inhibition of adenylyl cyclase (AC), alteration of 
phosphodiesterase (PDE), activation of calcium-
dependent potassium channels and G-proteins 
(13, 14). 
The aim of this study was to determine the most 
common pathway of NO action during 
meiotic maturation of oocyte in mouse. The 
results may be important in understanding of the 
mechanisms of regulation in reproduction of 
mammals. 
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MATERIAL AND METHODS 
M199 and bovine serum albumin (Sankyo 
Kagaku, Tokyo, Japan), Leibovitz’s L15 medium 
(Invitrogen, Grand Island, NY), Waymouth’s 
MB752/1 medium (Sankyo Kagaku, Tokyo, 
Japan), sodium pyruvate (Nacalai Tesque, Kyoto, 
Japan), L-glutamine, eCG, penicillin, 
streptomycin (Meiji Seika, Tokyo, Japan) , the 
sildenafil (Pfizer), hypoxanthine (HX), sodium 
nitroprusside (SNP), Nw-nitro-L-arginine methyl 
ester (LNAME), forskolin and PMSG (Sigma 
Chemicals Co). 
Sodium nitroprusside (SNP), Nw-nitro-L-arginine 
methyl ester (L-NAME) were directly dissolved 
in culture media and used immediately. 
Isolation, culture and examination of oocytes were 
performed according to the previously described 
method (15). 
 
Statistical analysis 
All data are presented as the mean ± S.E.M. Each 
experiment was repeated at least four times. 
Significant differences between oocytes in 
different concentrations of chemicals were 
determined for various parameters using an 
independent t- test. 
 

RESULTS 
In this study, SNP induced GV-arrested CEOs in 
comparison with control during the first 5 hrs (P < 
0.05) (Fig. 1).  
Sildenafil (100 nM) inhibited spontaneous meiotic 
resumption in both CEOs (30.00±2.5 versus 
100%, P < 0.05) and DOs (4.00±3.00 versus 96.06 
±1.20%) (P<0.05) (Fig. 2). This effect of 
Sildenafil was significantly different from SNP, 
which only inhibited the formation of PB1 in 
CEOs (not in Dos) at the end of 24 hrs culture 
(Fig3). Similarly, Sildenafil also inhibited 
significantly HX-arrested oocyte maturation in 
CEOs (GVBD: 19.78 ± 1.56% versus 
27.39±2.22%; PB1: 3.51±2.03% versus 
5.37±2.03%) (Fig4). 
During 5 hrs of incubation, action of SNP was the 
same as the forskolin on GVBD (Fig.5). 
Forskolin (6µm) a specific stimulator of AC, 
blocked the effect of SNP on meiotic maturation 
after 24 hrs incubation (GVBD: 29.99±3.98% 
versus 82.437±3.11%, P < 0.001; PB1: 
19.99±3.34% versus 49.94±2.98%, P < 0.01). 
Forskolin had no effect on GVBD and PB1 in 
comparison with control group. (GVBD: 
23.67±2.01% versus 25.05±1.03%; PB1: 18.45 
±2.1% versus 16.09±1.05%, P > 0.05, Fig.6). 

 

DISCUSSION 
This study shows that cAMP-elevating reagents in 
contrast to cGMP-elevating reagents could reverse 
the induced effects of SNP on the HX-arrested 
oocyte maturation.  Therefore the stimulatory 
effects of NO on mouse oocyte meiotic 
resumption is based on the signal pathway of 
cAMP, while the inhibitory mechanism is through 
the cGMP pathway. 
There are many data concerning the effects of NO 
on meiotic maturation of various mammalian 
species, however, the signaling mechanism by 
which NO exerts these effects have not been 
clearly elucidated (7,14-19). 
It is well known that NO have many biological 
effects through activation of sGC and induction of 
cGMP synthesis in several somatic cell and 
reproduction systems (20-23). 
For instance, the NO-induced acrosome reaction 
is mediated via the synthesis of cGMP and 
activation of PKG (24) which have important 
effects on sperm number, motility, and 
morphology (25). However, some experimental 
data also indicate that NO can induce its 
biological effects via non-cGMP-dependent 
pathway e.g. directly activates ion channel or 
inhibits AC activity (26). It has been reported that 
dual actions of NO, on inhibition and stimulation 
of CEOs, depends to its concentration (27).  
In this study it was found that SNP effects were in 
CEOs not in DOs; whereas Sildenafil   inhibited 
spontaneous oocyte maturation in CEOs and Dos, 
with greater potency on DOs. These controversies 
suggest there is another signaling pathway than 
cGMP which is involved in NO-mediated 
spontaneous oocyte maturation.  This result is 
consistent some other reports (28) that showed 
iNOS-derived NO maintains the intra follicular 
cGMP level to inhibit oocyte meiotic maturation. 
This study shows that 5 hrs exposures to SNP like 
using forskolin as a cAMP- elevating reagent 
prevents GVBD completely and therefore cAMP 
may also be involved in the NO-mediated 
spontaneous oocyte maturation. 
The meiotic arrest of the oocytes is due to 
elevation of cAMP in medium (29, 36). In the 
present study, GVBD and PB1 in CEOs arrested 
by HX increased by using the SNP not by 
Sildenafil (cGMP). Which illustrates the 
stimulatory effects of NO is via the cGMP-
independent pathway on HX-arrested model.  
The NO physiological functions are via regulation 
of cAMP as SNP inhibited forskolin effects which 
indicate that the target of NO is enzyme (30, 31, 
35). HX as a natural inhibitor of meiotic 
resumption acts with the same potency as PDE3A, 
the presence of PDE3A in rat and mouse oocytes  
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Figure 6. CEOs were cultured in HX-medium with 
forskolin (6 µM), SNP (10-5), or SNP + forskolin for 24 
hrs. (*P < 0.01, ** P < 0.001 vs. SNP). 

Figure 5. CEOs were cultured in maturation medium 
with SNP (10-5 mM), or forskolin (6 µM), for 5 hrs (H) 
(P < 0.05 vs. control). 
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Figure 3. DOs were cultured in the HX-medium 
with the SNP (10-5) 
 (P > 0.05 vs. control).  

Figure 4. HX-arrested CEOs were cultured in the 
presence or absence of Sildenafil (100 mM) for 24 hrs 
(H) (*P < 0.05 vs. control). 
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Figure 1. CEOs were cultured in maturation medium 
in the presence or absence of 1 mM SNP for 24 hrs 
and observed every hr during the first 5 hrs and again 
after 24 hrs. Oocytes were compared with control (C) 
group for GVBD at different times (P< 0001, vs. 
control). 

Figure 2. CEOs or DOs were cultured with 
Sildenafil (100nM) for 24 hrs (H). Bars indicate 
the percentage of oocytes at GVBD (*P < 0.05 vs. 
control). 
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have been proved by using specific PDE 
inhibitors (32, 33, 34).  
As the AC stimulatory effects of forskolin on the 
spontaneous meiosis maturation could be reversed 
by SNP, the exogenous NO elicits meiotic 
resumption in mouse CEOs by the decrease in 
cAMP.  
The only effects of NO in CEOs not in Dos 
meiotic maturation are consistent with the reports 
of Bu and Kazuo’s (19, 16). 
Now the question is whether NO up or down - 
regulates the PDE expression in changing the 
cAMP levels in oocytes.  
In this study the distance between the cumulus 
cells and oocytes increased in the SNP-treated 
group in the other word at the end of the culture 
they easily strip off from oocytes with once 
pipetting. So the disruption of gap junctions 
(which are important for maintenance of 
metabolic coupling and facilitation of transfer of 
cAMP) might also be one of the possible 

mechanisms of NO effects on oocytes maturation 
(37, 38). 
 

CONCLUSION 
There is different signaling pathway in 
spontaneous and HX-arrested oocyte maturation. 
The key of the first meiotic division arrest is the 
concentration of cAMP and cGMP in a 
preovulatory follicle. Since NO is a well known 
factor that stimulates cGMP production, it may 
concluded that high concentration of NO arrest 
meiotic of oocytes and a decrease in NO 
generation results in resumption of meiosis. 
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