Anticancer effects and cell cycle analysis on human breast cancer T47D cells treated with extracts of *Astrodaucus persicus* (Boiss.) Drude in comparison to doxorubicin

1,5 Abdolmohammadi M.H., 1,2 Fouladdel Sh., 3 Shafiee A., 4 Amin Gh., 5 Ghaffari S.M, 81,2 Azizi E.

1Molecular Research Lab., Department of Pharmacology and Toxicology, 2National Center of Excellence of Toxicology, 3Department of Medicinal Chemistry, and 4Department of Pharmacognosy, Faculty of Pharmacy, Medical Sciences/University of Tehran (MS/UT), and 5Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran

Received 12 Nov 2007; Revised 22 Jan 2008; Accepted 25 Jan 2008

ABSTRACT

Background and purpose of the study: There are considerable efforts to identify naturally occurring substances as new drugs in cancer therapy. Many components from dietary or medicinal plants have been identified that possess substantial chemopreventive properties. Iran has unique plant varieties yet to be studied for anticancer components. Therefore, anticancer effects and cell cycle alterations caused by *Astrodaucus persicus* (Boiss.) Drude, an Iranian species of family of Umbelliferae, in human breast cancer T47D cells was investigated.

Material and Methods: The T47D cells were seeded in 96-well culture plates in the presence and absence of different concentrations of either aerial or root extracts of *A. persicus* to determine their anticancer effects in comparison to doxorubicin using MTT assay. The changes in the cell cycle pattern of T47D cells using DAPI reagent in flow cytometric analysis was also studied.

Results: Both extracts of *A. persicus* showed strong antiproliferative effects on T47D cells when compared to RPMI control and doxorubicin. The cytotoxicity of the root extract was greater than aerial extract of *A. persicus*. Both extracts showed pattern of cell cycle relatively similar to RPMI and significantly different from doxorubicin.

Conclusion: These data are first report on potential anticancer activity of *A. persicus* extracts and its possible mechanism of action on cancer cell proliferation.

Keywords: Breast cancer, T47D cells, MTT assay, Flow cytometry, *Astrodaucus persicus*

INTRODUCTION

Breast cancer is one of the most common malignancies which affects women worldwide especially in western countries (1-2). It is both genetically and histopathologically heterogeneous, and the mechanism(s) underlying breast cancer development remains largely unknown (3). The development of breast cancer involves several types of genes that need to be activated or inactivated in order to promote malignancy (4). A major problem with present cancer chemotherapy is the serious deficiency of active drugs for the curative therapy of tumors (5-6). For thousands of years, natural products have played an important role throughout the world in treatment and prevention of human diseases (7). Over 60% of the currently used anticancer agents are derived in one way or another from natural sources (8-10). The search for anti-cancer agents from plant sources started in the 1950s by discovery and development of the vinca alkaloids, vincristine, and the isolation of the cytotoxic podophyllotoxins (11-14). The chemotherapeutic drugs including etoposide, camptothecin, vincristine, cis-platinum, cyclophosphamide, paclitaxel (Taxol), 5-fluorouracil and doxorubicin have been observed to induce apoptosis in cancer cells (15-17). Among them, the agents that alter the cell cycle have been of particular interest, since cell cycle regulation is the basic mechanism underlying cell fate, i.e., proliferation, differentiation or acquire death (18). Thus uncontrolled cell proliferation is one of the main hallmarks of cancer, and tumor cells damages in genes that are directly involved in regulation of the cell cycle (19-21). Most, if not all, human cancers show a deregulated control of G1 phase progression, a

Correspondence: aziziebr@tums.ac.ir
A. persicus extracts

Preparation of A. persicus extracts

A. persicus plant (Voucher No. 6642-THE, Herbarium of faculty of Pharmacy) was collected from the Taleghan road and was identified by Dr. Amin GR. The aerial part and root were isolated, dried and chopped finely using a blender.

One of the approaches used in drug discovery, is the ethnomedical data approach, in which the selection of a plant is based on the prior information on the use of the plant in the folk medicine. It is generally known that ethnomedical data provides substantially increased chance of finding active plants relative to random approach (26-27). Thus, Astrodacus persicus (Boiss.) Drude, a medicinal plant of the family of Umbelliferae (Apiaceae) used as a remedy in cancer-related diseases have been evaluated for its properties. In Iran, the genus Astrodacus is represented by two species, Astrodacus orientalis (L.) Drude and Astrodacus persicus (Boiss.) Drude, which grow wild in different regions of Iran and nearby countries such as central and southern Russia, the western desert of Syria, inner Anatolia, Transcaspia and central Asia. In Iran, Astrodacus persicus is mainly distributed in Mazandaran, Tehran, Semnan, Ghazvin and Golestan provinces. The composition of the essential oils of the root/leaves and flowers/fruits of A. persicus have been investigated but cytotoxicity and anticancer activity of this plant have not been reported previously (28-32). Therefore, the main aim of this study was to evaluate the cytotoxic properties and anticancer effects of Astrodacus persicus extract and to determine the possible mechanisms of cell cycle alterations elicited by the extract on breast carcinoma cancer cells.

MATERIAL AND METHODS

Chemicals and reagents

RPMI 1640, pen-strep and FBS were purchased from Gibco (UK). Doxorubicin (Adriablastina, Italy), MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide), dimethyl sulfoxide (DMSO) were purchased from Sigma (Germany). DAPI and Nonidet P40 were purchased from Roche (Germany).

Preparation of A. persicus extracts

Hundred grams of the dried material of aerial part or root were extracted with methanol by soxhlet extraction. The hydroalcoholic extracts were filtered and evaporated to dryness under reduced pressure by a rotatory evaporator. The resulting residues for each part of plants were stored at -20°C. The recovery weight of aerial part was about 14% and for root it was 5% of the dried material. The extract was dissolved in DMSO (Sigma), sterilized by filtration and subsequently diluted to appropriate working concentrations with RPMI culture medium.

Cell lines and culture medium conditions

The human breast cancer T47D cell line (ATCC HTB-133, USA) was obtained from the Cell Bank of Pasteur Institute in Tehran (IRAN). This hormone-sensitive breast cancer cell line was grown routinely as monolayer culture in RPMI-1640 culture medium supplemented with 100 U/mL of penicillin, 100 ng/mL of streptomycin and 10% heat-inactivated FBS at 37 °C in 5% CO2 incubator (15, 25).

In vitro cytotoxicity assay

Cells were used in cytotoxicity studies when 90% confluence was reached in T25 flasks. Cells were harvested with trypsin/EDTA, washed with PBS and counted using trypan blue dye exclusion method. T47D cells were seeded into 96-well plates at a density of 10^4 cells/well and left to attach to the plates for 48 hr. Then, cells were incubated for 2, 4 and 6 days with various concentrations of extracts. After the exposure time, the cells were incubated with 25 microliter of MTT (4 mg/ml) at 37°C for 3 hr. After dissolving the formazan crystals in DMSO, plates were read in a microplate reader (SUNRISE TECAN, Austria) at 540 nm against 620 nM (15, 33). This experiment was performed in triplicates and repeated 3 times. For each concentration Mean values ± SE was determined.

Analysis of the cell cycle

Cell cycle phase distribution was determined by analytical DNA flow cytometry. T47D cells were incubated for 48 hours with IC50 concentration of aerial and root part extracts of A. persicus. Extracts, doxorubicin and control RPMI treated T47D cells were harvested and adjusted to 5x10^5 cells/ml and stained with DAPI reagent at 4°C for 30 min in dark. The PARTEC flow cytometer with FloMax software was used to analyse DNA content using UV light at FL4. The percentage of cells in the various phases was determined and statistical analysis of data from flow cytometric experiments was carried out (18).
Statistical analyses were performed by the SPSS 11.5 software. Statistical differences among treated and untreated cells were determined by one-way ANOVA (Analysis of Variance). To compare several groups, Tukey post-hoc test was applied and mean differences with p< 0.05 were considered statistically significant.

RESULTS

Cytotoxicity of the extracts of A. persicus on T47D cells
The antiproliferative effects of plant extracts in comparison to 250nM of doxorubicin on T47D cells was determined by MTT method. In vitro screening of the extracts of aerial part and root of A. persicus on breast carcinoma T47D cell line produced a time and dose-dependent inhibition of the cell growth (Figures 1-3) (15,33).

Cell cycle distribution of T47D Cells treated with extracts of aerial part and root of A. persicus
In order to determine the cell cycle pattern of T47D cells, the DNA content of RPMI, doxorubicin and extracts treated cells were analyzed following DAPI staining and flow cytometric method. The cell cycle phase distribution was quantitated from 3 independent sets of measurements that showed relatively similar pattern to RPMI which was completely different than Doxorubicin (Figures 4 and 5) (18).

DISCUSSION

Cancer chemotherapeutic agents can often provide temporary relief from symptoms, prolongation of life and occasionally complete remission. A successful anticancer drug should kill or incapacitate cancer cells without causing excessive damages to normal cells. This ideal situation is achievable by inducing apoptosis in cancer cells. Chemopreventive agents comprise diverse groups of compounds with different mechanisms of action with ultimate ability to induce apoptosis. Understanding the modes of action of these compounds should provide useful information for their possible applications in cancer prevention and perhaps in cancer therapy (34-35).

Cell cycle modulation by various natural and synthetic agents is gaining widespread attention in recent years. Given that disruption of cell cycle plays a crucial role in cancer progression, its modulation by phytochemicals seems to be a logical approach in control of carcinogenesis (36). There are a number of herbs that have shown the ability to induce cell cycle arrest and to play an important role in cancer prevention and therapy.
Anticancer effects and cell cycle changes by A. persicus

Figure 1. Cytotoxicity of different concentrations of aerial part extract of *A. persicus*. Cells were seeded into 96-well plates (10^4 cells/well). Two days later, the cells were incubated with RPMI as negative control, Doxorubicin 250 nM as positive control and different concentrations of extract of *A. persicus* aerial part (A) for 2, 4 and 6 days. Cell proliferation was determined by MTT assay. The data represent the mean±SE of 3 independent experiments each in triplicate format.

Figure 2. Cytotoxicity of different concentrations of root extract of *A. persicus*. Cells were seeded into 96-well plates (10^4 cells/well). Two days later, the cells were incubated with RPMI as negative control, Doxorubicin 250 nM as positive control and different concentrations of extract of *A. persicus* root (B) for 2, 4 and 6 days. Cell proliferation was determined by MTT assay. The data represent the mean±SE of 3 independent experiments each in triplicate format.

Figure 3. Effect of IC_{50} Concentrations of aerial and root extract of *A. persicus*. Cells were seeded into 96-well plates (10^4 cells/well). Two days later, the cells were incubated with RPMI as negative control, Doxorubicin 250 nM as positive control and IC_{50} concentrations of extract of *A. persicus* aerial part (A) and root (B) for 2, 4 and 6 days. Cell proliferation was determined by MTT assay. The data represent the mean±SE of 3 independent experiments each in triplicate format.

Figure 4. Cell cycle phase distribution of T47D cells. T47D cells (5×10^5 cells/ml) treated with Aerial (A 1mg/ml) and root (B 0.5mg/ml) as well as RPMI or Doxorubicin 250nM were prepared for cell cycle analysis after 2 days exposure. Cells stained with DAPI reagent were analysed with PARTEC flow cytometer equipped with UV light at FL4. The data represent the mean±SE of 3 independent experiments.
Figure 5. Cell cycle patterns of treated T47D cells. Flow cytograms of T47D cells treated with RPMI, Doxorubicin 250nM, aerial (A 1mg/ml) and root (B 0.5 mg/ml) extracts stained with DAPI reagent show G1, S, G2/M phases of cell cycle under different assay conditions.

In addition, to study the mechanism behind the anticancer activity of *A. persicus*, the effects of IC50 concentration of extracts on the cell cycle phases of T47D cells were investigated. Our results showed that the pattern of distribution of phases of cell cycle of T47D cells following exposure to both extracts of *A. persicus* was relatively similar to control RPMI. However, unlike doxorubicin, the inhibitory effect of extracts on proliferation of T47D cells was not related to cell cycle arrest in G2/M.

In conclusion, extracts of *A. persicus* have concentration and time-dependent anticancer activities without significant alteration on cell cycle pattern in comparison to control RPMI. Extract of root in comparison to the extract of aerial part shows higher anticancer activity. Further molecular studies are undergoing to elucidate the mechanism(s) of action of these extracts on cancer cells.

ACKNOWLEDGMENTS
The authors would like to thank the financial support of National Center of Excellence of Toxicology (NCET) and also kind assistance of office of vice-chancellor for research of medical sciences university/university of Tehran.

REFERENCES