Synthesis and antitubercular activity of new N,N-diaryl-4-(4,5-dichloroimidazole-2-yl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxamides

Amini M., Navidpour L., Shafiee A.

Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 14174, Iran

Received 5 June 2007; Revised 23 Oct 2007; Accepted 15 Nov 2007

ABSTRACT

Background and the purpose of the study: Dihydropyridines having carboxamides in 3 and 5 positions show anti-tuberculosis activity. The purpose of the present study was to synthesize new DHPs having possible anti-tuberculosis activity.

Methods: 4,5-Dichloroimidazole-2-carboxaldehyde was condensed with N-arylacetoacetamides and ammonium acetate in methanol to give N,N-diaryl-4-(4,5-dichloroimidazole-2-yl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxamides. All compounds were screened for their antitubercular activity against Mycobacterium tuberculosis (H37Rv).

Results and major conclusion: Some of the new synthesized compounds exhibited a moderate activity in comparison to rifampicin.

Keywords: Antituberculosis, Dihydropyridine, Dichloroimidazole

INTRODUCTION

The dihydropyridines (DHPs) are well-known drugs for the treatment of hypertension and cardiovascular disorders (1). They also have antiallergic (2), anti-inflammatory (3) and Ca²⁺ channel antagonist activities (4). Recently, the syntheses of DHPs with respect to Multidrug Resistance (MDR) reversal in tumor cell gave a new dimension to their applications (5-6). In addition, 1,4-DHP class of compounds are excellent starting synthons for development of antitubercular agents (7-9). It has been demonstrated that substitution of aryl-amide group for dicarboxylic esters moiety reduces the Ca²⁺ channel blocker activity and increases antitubercular activity (10).

Previous studies have shown a moderate to good antitubercular activity for several aryl six-membered ring at 4-position and aryl-amide side chain in C₃ and C₅ of DHPs against Mycobacterium tuberculosis (H₃₇Rv) (7-9).

As a part of our ongoing research to design novel dihydropyridines (11-17), in this study the design, synthesis and antitubercular activity of N,N-diaryl-4-(4,5-dichloroimidazole-2-yl)-1,4-dihydro-2,6-dimethyl-3,5-pyridine- dicarboxamides 3a-j are described.

MATERIAL AND METHODS

Chemistry

Melting points were determined using a Kofler hot stage apparatus and are uncorrected. ¹H NMR spectra were run on a Bruker FT-80 spectrometer. TMS was used as an internal standard. Mass spectra were measured with a Finnigan TSQ-70 spectrometer at 70 eV. The IR spectra were recorded on a Nicolet FTIR 550 spectrophotometer.

The compounds 3a-j (Table 1) were synthesized according to Scheme 1, from condensation of 4,5-dichloroimidazole-2-carboxaldehyde 1, N-arylacetoacetamide 2 and ammonium acetate in methanol. 4,5-Dichloroimidazole-2-carboxaldehyde was prepared according to reported method (13). N-Arylacetoacetamides (2a-j) were synthesized according to modified Clemens method (18) by simple condensation of 2,2,6-trimethyl-1,3-dioxin-4-one with the appropriate arylamine.

General procedure for the preparation of compounds 3a-j.

To 3 mmoles of 4,5-dichloroimidazole-2-carboxaldehyde 1 was added 6 mmoles of N-arylacetoacetamide 2 and 20 mmoles of ammonium acetate in 20 ml of methanol. The mixture was refluxed for 24 h and the solvent was
removed under reduced pressure. The residue was purified by column chromatography using chloroform/methanol (20:1) as eluent. Crystallization from chloroform & petroleum ether gave pure compounds 3a-j.

N,N-Diphenyl-4-(4,5-dichloroimidazole-2-yl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxamide (3a).

IR (KBr) ν cm⁻¹: 3277 (NH), 1670 (C=O).

¹HNMR (DMSO-d₆) δ: 2.17 (s, 6H, Me 2,6), 4.80 (s, 1H, H₄), 6.99-7.80 (m, 10H, aromatic), 8.6 (bs, 1H, NH-dihydropyridine), 9.90 (bs, 2H, NH-amide), 12.8 (bs, 1H, NH-imidazole). MS: m/z (%) 391 (M⁺, 4), 388 (38), 345 (36), 296 (76), 253 (90), 196 (20), 136 (19), 106 (36), 93 (100).

N,N-Di-3-fluorophenyl-4-(4,5-dichloroimidazole-2-yl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxamide (3b).

IR (KBr) ν cm⁻¹: 3258 (NH), 1665 (C=O).

¹HNMR (DMSO-d₆) δ: 2.15 (s, 6H, Me 2,6), 4.95 (s, 1H, H₄), 6.81-7.15 (m, 2H), 7.38-7.55 (m, 6H), 8.65 (bs, 1H, NH-dihydropyridine), 9.90 (bs, 2H, NH-amide), 12.55 (bs, 1H, NH-imidazole). MS: m/z (%) 518 (M⁺, 3), 406 (17), 381 (40), 353 (19), 296 (42), 271 (100), 137 (85), 111 (100), 109 (83), 83 (42).

N,N-Di-4-fluorophenyl-4-(4,5-dichloroimidazole-2-yl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxamide (3c).

IR (KBr) ν cm⁻¹: 3244 (NH), 1675 (C=O).

¹HNMR (DMSO-d₆) δ: 2.15 (s, 6H, Me 2,6), 4.95 (s, 1H, H₄), 7.33 (d, J = 8Hz, 4H), 7.75 (d, J = 8Hz, 4H), 8.60 (bs, 1H, NH-dihydropyridine), 9.90 (bs, 2H, NH-amide), 12.40 (bs, 1H, NH-imidazole). MS: m/z (%) 518 (M⁺, 10), 406 (15), 381 (38), 296 (28), 271 (71), 137 (85), 111 (100), 109 (83), 83 (42).

N,N-Di-3,4-dichlorophenyl-4-(4,5-dichloroimidazole-2-yl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxamide (3d).

IR (KBr) ν cm⁻¹: 3245 (NH), 1669 (C=O).

¹HNMR (DMSO-d₆) δ: 2.10 (s, 6H, Me 2,6), 4.92 (s, 1H, H₄), 7.36-7.51(m, 4H), 8.05 (s, 2H), 8.40 (bs, 1H, NH-dihydropyridine), 10.26 (bs, 2H, NH-amide), 12.40 (bs, 1H, NH-imidazole). MS: m/z (%) 577 (M⁺, 10), 549 (6), 368 (18), 255 (8), 236 (18), 138 (12), 123 (20), 111 (35), 97 (47), 83 (70), 57 (100).

N,N-Di-3-bromophenyl-4-(4,5-dichloroimidazole-2-yl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxamide (3g).

IR (KBr) ν cm⁻¹: 3250 (NH), 1677 (C=O).

¹HNMR (DMSO-d₆) δ: 2.20 (s, 6H, Me 2,6), 4.90

Scheme 1
Table 1. Physical data and antitubercular screening results of compounds 3a-j against *M. Tuberculosis* (H37Rv strain)

<table>
<thead>
<tr>
<th>Comp. No.</th>
<th>R</th>
<th>Mp (°C)</th>
<th>Yield (%)</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>H</td>
<td>260-262</td>
<td>45</td>
<td>9</td>
</tr>
<tr>
<td>3b</td>
<td>3-F</td>
<td>159-161</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>3c</td>
<td>4-F</td>
<td>175-176</td>
<td>27</td>
<td>13</td>
</tr>
<tr>
<td>3d</td>
<td>3-Cl</td>
<td>170-172</td>
<td>52</td>
<td>50</td>
</tr>
<tr>
<td>3e</td>
<td>4-Cl</td>
<td>168-169</td>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td>3f</td>
<td>3,4-Cl₂</td>
<td>254-256</td>
<td>47</td>
<td>34</td>
</tr>
<tr>
<td>3g</td>
<td>3-Br</td>
<td>178-180</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>3h</td>
<td>4-Br</td>
<td>254-255</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>3i</td>
<td>3-NO₂</td>
<td>250-253</td>
<td>48</td>
<td>43</td>
</tr>
<tr>
<td>3j</td>
<td>4-NO₂</td>
<td>285-288</td>
<td>50</td>
<td>43</td>
</tr>
</tbody>
</table>

Rifampicin >98

RESULT AND DISCUSSION

All compounds were tested against *M. tuberculosis* H37Rv strain at concentration of 6.25 µg/ml in DMSO. Rifampicin was used as a reference drug. Primary screening was conducted in Bactec 12 B medium using the Bactec 460 radiometric system (19). The antitubercular activity and physical data of compounds 3a-j are summarized in Table 1. From the Results it appears that substitution of 4,5-dichloroimidazole ring at 4-position of 1,4-DHP affects the antitubercular activity when 3,5-diester group in classic DHP structure was replaced by carboxamide moiety. The results demonstrate that a five member heterocyclic group with electron withdrawing substituent is a suitable bioisoster for nitro phenyl group which was previously reported as antitubercular agent (10).

Comparison of the activities of 3a-j indicates that the most active compound is 3d with 3-chlorophenyl group at 3,5 dicarbox-amide position. 3-Nitrophenyl and 4-nitrophenyl substituted compounds were also relatively active, but other substitutions did not show good activity. Compounds 3a-j could serve as valuable probes to study the structure-function relationships for antitubercular activity.
ACKNOWLEDGMENT

The authors are very thankful to the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF), funded by the National Institute of Allergy and Infectious Diseases, a division of the National Institute of Health, USA, for providing biological screening results. This work was supported by grants from the Research Council of Tehran University of Medical Sciences, INSF (Iran National Science Foundation) and Iran Chapter of TWAS.

REFERENCES