DIFFERENTIAL ANTINOICEPTIVE EFFECTS OF YOHIMBINE IN THE RAT FORMALIN TEST

1MOHAMMAD JAVAD KHODAYAR, 2MOHAMMAD-REZA ZARRINDAST, 1NIMA NADERI, 1BIJAN SHAFA 数

1Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shaheed Beheshti University of Medical Sciences, 2Department of Pharmacology, School of Medicine and Iranian Center for Addiction Studies, Tehran University of Medical Sciences

ABSTRACT

Although many pharmacological studies indicate that yohimbine antagonize the antinociceptive effects of α2-adrenoceptor agonists, there are evidences that yohimbine by itself produces antinociceptive effects in the formalin test. However, its site of action on nociceptive processing is not fully understood. In this investigation, a series of experiments were designed to study the antinociceptive effects of intraperitoneal (i.p.), intraplantar (i.pl.) and intrathecal (i.t.) administration of yohimbine in the nociceptive processing. Yohimbine (2 and 4 mg/kg, i.p.) induced antinociception in the early phase (0-5 min) as well as in the late phase (10-60 min) of formalin test. While i.pl. yohimbine (5-100 µg) decreased the response in the early phase, i.t. yohimbine (30 µg) decreased pain behavior in the late phase of formalin test in rats.

In conclusion, our findings show that yohimbine induces antinociception in both phases of formalin test and its effects are produced at least in part through actions at the peripheral terminal of primary afferents or at the spinal level.

Keywords: Yohimbine; Formalin test; Antinociception, Rat

INTRODUCTION

Yohimbine, an indole alkaloid, is a relatively selective α2-adrenoceptor antagonist, which is frequently used to assess the involvement of α2-adrenoceptor agonists in the mechanism of action of drugs (1). It has been reported that yohimbine eliminates or attenuates the analgesic effects of α2-adrenoceptor agonists in different pain models (2-5). Interestingly, several studies have indicated that yohimbine dose not completely antagonize the effects of clonidine in the formalin test (6-8), and acts as an analgesic (9). It has been reported that yohimbine reverses clonidine antinociception in the tail-flick (3) and the hot-plate tests (2). These reports raise the possibility that the effects of yohimbine in the formalin test may be mediated by mechanisms other than blockade of adrenoceptors and are different from those of other nociceptive tests. However, the site of yohimbine action on nociceptive processing and the importance of local peripheral and spinal involvement in antinociception are unclear.

Numerous studies have examined the effects of pharmacological agents on the pain-related behaviors in the formalin test (10). Intraplantar injection of formalin evokes signs of nociception (flinching and licking of the injected paw) in the early stage (phase 1), followed by a quiescent period characterized by fewer pain behaviors, and late-hyperalgesic (phase 2) components that last for approximately 1 hr (11,12). It is generally agreed that the early phase results, at least in part, from direct activation of both low threshold mechanoreceptive and nociceptive types of peripheral nociceptors (13,14), whereas the late phase reflects induction of a spinal state of facilitation, central sensitization, development of inflammation, and enlargement of receptive fields (15-18).

The purpose of this study was therefore to evaluate the antinociceptive effects of i.p., i.pl. and i.t. administration of yohimbine in the nociceptive processing in order to further elucidate the site of yohimbine action.

MATERIALS AND METHODS

Drug

The solution of yohimbine hydrochloride (Tocris Cookson Ltd, UK) was prepared in a saline.

Animal maintenance and preparation

Male Wistar rats (Pasture institute laboratories, Tehran, Iran), weighing 225-290 g at the time of experiments, were kept in group cages and maintained on a 12 hr light/dark cycle with free access to food and water, except during the time of experiments. Rats were randomly divided into groups of 6-8 and each animal was used only once. For i.t. cannulation, rats were anesthetized with a mixture of ketamine hydrochloride (80 mg/kg, i.p.) and xylazine (5 mg/kg, i.p.) for

Correspondence: Bijan Shafaghi, Department of Pharmacology, School of Pharmacy, Shaheed Beheshti University of Medical Sciences, P.O. Box: 14155-6153, Tehran, Iran. E-mail: b.shafaghi@gmail.com
induction of anesthesia and intraoperative analgesia. Rats were placed in a stereotaxic head holder and a polyethylene (PE-10) catheter filled with sterile saline was inserted through an incision in the atlanto-occipital membrane (19, 20). They were then housed individually after surgery and allowed to recover for at least 6 days. Rats with neurological signs such as paralysis of fore paws or hind paws upon recovery from anesthesia were excluded from the experiment. Proper placement of the i.t. catheter was verified at the end of formalin test by the occurrence of fast hind limb paralysis after an i.t. injection of 15 µl of 2% lidocaine hydrochloride or by direct visualization of the catheter tip after laminectomy.

Drug injections
Yohimbine was freshly prepared and administered 20 min before formalin in the following volumes: i.p. in a volume of 1 ml/kg; i.t. in a volume of 5 µl and i.pl. in a volume of 100 µl. Each i.t. injection was followed by an injection of 10 µl of normal saline to flush the drug which was left in the catheter lumen over a period of 30 s.

Formalin test
Formalin test was used as reported by Dubuisson and Dennis (11). Before the test, the animals were placed individually in transparent Plexiglas testing chambers (30 x 20 x 20) and allowed to acclimate for at least 35-40 min. A mirror was placed at 45° angle below the observation box in order to allow the experimenter an unobstructed view of the injected paw. One hundred µl of 2.5% formalin was injected into the left hind paw using a microsyringe with a 29-gauge needle. Animals were immediately returned to the observation box and their behavior was continuously scored in 15 second intervals for a total of 60 min using a weighted score (11, 21, 22). Many different summarizing functions have been used to simplify numerical recipes of formalin test. In this experiment, the area under the curve (AUC) of pain score-time curves during 0-5 min was determined as the early phase and the 10-60 min interval was defined as the late phase of the formalin test.

Data Analysis
Pain behavior was calculated from the area under the curve (AUC) of pain score-time curve by the use of trapezoidal rule. Results are expressed as mean of AUC ± S.E.M. For statistical analysis, ANOVA test was used. Moreover, after ANOVA, the Tukey’s HSD test for multiple comparisons was used. Probabilities of P < 0.05 were considered as statistically significant.

RESULTS AND DISCUSSION
Fig. 1 shows the antinociceptive effects of i.p. yohimbine in the formalin test. Intraperitoneal administration of yohimbine (2 and 4 mg/kg) induced antinociception in the early [F(ANOVA(2,18)=7.25; P<0.01] and late phases [F(ANOVA(2,18)=20.64; P<0.001] of formalin test. The present study confirms previous findings (6) that doses of 1 and 4 mg/kg yohimbine produces antinociception in the rat formalin test but not in the tail-flick and hot-plate tests. It has been demonstrated (9) that yohimbine through activation of 5-HT₁A receptors produces antinociception. Our findings indicate that yohimbine produces antinociception parallel to α₂-adrenergic agonist. This suggests that, the effects of yohimbine in the formalin test may be mediated by mechanisms beyond adrenoceptor blockade. It has been reported that, neurotoxic destruction of noradrenergic pathways, either decrease the behavioral response to formalin (23-25) or have no effect in the formalin test (26).

One-way ANOVA showed that administration of α₂-adrenergic antagonist, yohimbine (10, 20, 30, 60, and 120 µg, i.t.) altered pain response in the late phase [F(5,31)=5.1, P<0.01], but not in the early phase of the test [F(5,31)=0.29, P>0.05]. However, while spinal noradrenergic fibers may play a predominant role in the antinociception (27), post hoc analysis indicated that yohimbine (30 µg/rat) has decreased pain behavior in late phase (Fig. 2). In agreement with our data, it has been shown that i.t. administration of yohimbine significantly reduces licking activity in both early and late phases of formalin test in mice (28). Furthermore, evidences have been provided (29) that nonsynaptic release of norepinephrine from the rat spinal cord slices is modulated via presynaptic α₂A-adrenergic autoreceptors. They observed that clonidine inhibited whereas yohimbine enhanced the release of norepinephrine in response to neuronal stimulation. As it has been depicted in Fig 2, it seems that yohimbine at the dose of 30 µg/rat, may act pre-synaptically to increase the release of norepinephrine and subsequently suppresses pain and at the dose of 120 µg/rat may acts postsynaptically to inhibit hyperpolarization of neurons and mask its presynaptic action. In contrast with these finding, it has been demonstrated (30) that pretreatment of rats with i.t. yohimbine following injection of 50 µl of 2% formalin enhances the flinching behavior and increases noradrenaline concentration in the dorsal horn of the spinal cord.

Fig. 3 represents the effect of i.pl. yohimbine on pain behavior evoked by formalin. Intraplantar administration of yohimbine reduced pain responses in animals in the early phase.
Yohimbine differential antinociceptive effects

Figure 1. The effect of i.p. administration of yohimbine on pain behavior in the formalin test. Pain response was recorded between 0-5 (A; early phase) and 10-60 (B; late phase). Yohimbine was administered 20 min before formalin. Each bar represents the mean ± S.E.M. from six to eight rats. *P<0.05, **P<0.01, ***P<0.001 compared to saline group.

Figure 2. The effect of i.t. administration of yohimbine on pain behavior. Pain response was recorded between 0-5 (A; early phase) and 10-60 (B; late phase). Yohimbine was administered 20 min before formalin. Each bar represents the mean ± S.E.M. from six to eight rats. *P<0.001 compared to saline control and also P<0.01 compared to 120 µg yohimbine group.

Figure 3. The effect of i.pl. yohimbine on pain behavior in the early (A) and late phase (B) of formalin test. Yohimbine was co-administered with formalin. Each bar represents the mean ± S.E.M. from six to eight rats. ***P<0.001 compared to control group.
However, the pain response induced by formalin was not affected during the late phase [FANOVA(4,28)=2.23; P>0.05] of formalin. Co-administration of yohimbine with formalin locally produced antinociception in early phase, suggesting a predominant peripheral rather than central site of action for yohimbine. Whereas the early response to formalin mainly reflects the activation of nociceptors, it may be concluded that the antinociceptive effect of i.p. yohimbine may be related to the peripheral terminal of primary afferent. In agreement, the present study showed that, i.pl. yohimbine reduces pain intensity only, in the early phase of the test. It has been shown that yohimbine blocks firing of rat dorsal root ganglion neurons by inhibition of both tetrodotoxin-sensitive and tetrodotoxin-resistant Na$^+$ currents and vanilloid VR1 receptors at μM concentrations (31). The results of another study shows that high concentration of yohimbine markedly potentiate the duration of tetrodotoxin block by an effect that dose not appear to be mediated by adrenergic receptors (32). These blocking effects may underlie the antinociceptive mechanism of yohimbine on primary afferent. Furthermore, yohimbine probably affects sympathetic nervous system after i.pl. injection. The sympathetic nervous system contributes to hyperalgesia following tissue injury and inflammation, but the nature of the involvement in this case differs from that in nerve injury (33). Inflammation does not lead to up-regulation of α2A-adrenoceptors in dorsal root ganglia (34), and in this case, the enhancing effects of noradrenaline on the sensitivity of primary afferents may be mediated indirectly by actions on sympathetic postganglionic nerves (33, 35). It has been proposed that noradrenaline sensitizes nociceptors indirectly and involves an action on α2-adrenoceptors on the terminals of post-ganglionic sympathetic neurons rather than on the nociceptive fibres themselves (35-37). Activation of these α2-adrenoceptors elicits production and release of prostaglandins, in particular prostaglandin E2 and prostaglandin I2 by post-ganglionic sympathetic sympathetic neurons (38,39). These prostaglandins have been shown to sensitize nociceptors (40).

In conclusion, the results of this study show that yohimbine exhibits antinociception in both phases of formalin test and its effects are produced at least in part, through its actions at peripheral terminal of primary afferents or at the spinal level.

REFERENCES

34. Birder LA, Perl ER. Expression of α₂-adrenergic receptors in rat primary afferent neurons after peripheral nerve injury or inflammation. J Physiol (Lond) 1999; 515:533-542.