SYNTHESIS AND ANTIMYCOBACTERIAL ACTIVITY OF 2-HYDROXYACETAMIDES

FEREIDOON DARYAEE, FARZAD KOBARFARD, ALI KHALAJ, PARISSA FARNIA

1Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, 2Department of Medicinal Chemistry, Faculty of Pharmacy, National Research Institute of Tuberculosis and Lung Diseases, Shaheed Beheshti University of Medical Sciences

ABSTRACT
On the basis of the structural similarity of 2-hydroxyacetamides (glycolamides) with N-glycolylmuramic acid residues of the cell wall of Mycobacterium tuberculosis several of these compounds were prepared mainly by the reaction of 5-oxo-2,2-dimethyl-1,3-dioxolane 1 (glycolic acid acetonide) with corresponding amines and their antimycobacterial activities were determined by Alamar blue Assay. Of the synthesized compounds disubstituted amides bearing hydrophilic moieties showed moderate activity.

Keywords: 2-Hydroxyacetamides, Glycolic acid acetonide, Alamar blue Assay, Mycobacterium tuberculosis, Hydrophilicity.

INTRODUCTION
In recent years due to the emergence of monodrug or multidrug resistant strains of Mycobacterium tuberculosis and the AIDS epidemic, the incidence of this infection and rates of mortality from tuberculosis have increased considerably (1), and search for new drug leads of new structural classes and with novel mechanism of action have been intensified in this field. An attractive target for such new agents is the mycobacterial cell wall of which many structural components are not present in mammalian system or other bacteria (2) and several known antituberculosis drugs such as ethambutol is believed to act against mycobacterial cell wall biosynthesis.

One of the differentiating features of the cell envelope of Mycobacterium tuberculosis is that the N-acetyl group on the muramic acid residues of the peptidoglycan structures which is common in other bacteria is oxidized to N-glycolyl function (1). This essential and rather specific component of the mycobacterium cell wall which is formed in the early stages of the cell wall biosynthesis acts as a substrate for a number of enzymatic transformations (Fig. 1)

In the search for drugs targeting M.tuberculosis cell wall biosynthesis it seemed that N-substituted glycolamides 3a-n could serve as inhibitors due to their structural similarity with N-glycolylmuramic acid residues of the cell wall structure. (Fig. 2)

This article describes the synthesis and physicochemical properties of several known (3a-d) and novel 2-hydroxyacetamides (3a-d, j-n) and preliminary evaluation of antimycobacterial activity of these compounds by Alamar blue Assay (4) in comparison with ethambutol as the reference drug.

Figure 1. Structure of the basic peptidoglycan unit of mycobacterial cell walls

Figure 2

Correspondence: Farzad Kobarfard, Department of Medicinal Chemistry Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran, Email: farzadkf@yahoo.com
Figure 3. synthesis of 2-hydroxyacetamides 3_{a-n}

Table 1. structures and antimycobacterial activities of 2-hydroxyacetamides 3_{a-n}

<table>
<thead>
<tr>
<th>R'N</th>
<th>MIC µg/mL</th>
<th>R'N</th>
<th>MIC µg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>>100</td>
<td>h</td>
<td>15.75</td>
</tr>
<tr>
<td>b</td>
<td>87.5</td>
<td>i</td>
<td>74</td>
</tr>
<tr>
<td>c</td>
<td>29.5</td>
<td>j</td>
<td>67.5</td>
</tr>
<tr>
<td>d</td>
<td>12.5</td>
<td>k</td>
<td>14.25</td>
</tr>
<tr>
<td>e</td>
<td>25.5</td>
<td>l</td>
<td>33.25</td>
</tr>
<tr>
<td>f</td>
<td>38.75</td>
<td>m</td>
<td>60</td>
</tr>
<tr>
<td>g</td>
<td>13.75</td>
<td>n</td>
<td>57</td>
</tr>
<tr>
<td>ethambutol</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MATERIALS AND METHODS

Chemistry

The 2-hydroxyacetamides \(3_{b-n}\) were prepared through the reaction of the corresponding amines \(2_{b-n}\) with 2,2-dimethyl-5-oxo-1,3-dioxolane 1 (glycolic acid acetonide) (5) which in turn was prepared (6) by the reaction of glycolic acid with acetone (Fig 3). Attempted synthesis of the amide \(3_1\) by a similar method failed and this compound could be prepared through the reaction of 2-aminothiazole with acetoxyacetyl chloride (7) followed by hydrolysis of the acetyl group (Fig 3).

Of compounds which were synthesized in this investigation, preparation of \(3_{c-g}\) (8) and \(3_{a-n}\) (9), through the reaction of the corresponding amines with glycolic acid and preparation of \(3_1\) through the reaction of amine \(2_1\) with glycolic acid methyl ester (10) have previously been reported. All the new compounds were characterized by \(^1\)HNMR, IR, and Mass spectral data and the physical and spectral data of the known compounds were consistent with the literature values.

Melting points were determined on a Reichert hot plate and are uncorrected. \(^1\)HNMR spectra were recorded on a Varian Unity Plus 400 MHz spectrometer using DMSO-d_6 and CDCl_3 as solvent. Chemical shifts (\(\delta\)) are reported in ppm relative to TMS as internal standard. Mass spectra were obtained on a Finningan TSQ-70 instrument. Infrared spectra were recorded on a Nicolet Magna IR 550 spectrometer. Glycolic acid, amines \(2_{b-n}\), solvents and silica gel 60 for column chromatography were purchased from Merck (Germany).

\(N\)-(hydroxyacetyl)-2-aminothiazole 3_a

To a mixture of 2-aminothiazole (2 gr, 20 mmol) and 0.2 N sodium hydroxide (100 mL) under continuous stirring at 0°C was added dropwise acetoxyacetyl chloride (2.734 gr, 6.02 mL) and the mixture was then stirred at room temperature for 20 min (7). The precipitate (0.68 gr) was collected by filtration and without further purification, refluxed in 1N sodium hydroxide (10 mL) for 1 hrs. The reaction mixture was then cooled to room temperature, the precipitate was filtered and crystallized from ethyl acetate to afford 0.5 gr (11%) of compound \(3_a\) which was characterized by the physicochemical data listed below.

m.p.: 186-188 °C.

\(^1\)HNMR(6) (DMSO): 11.73 (1H; s; amide NH); 7.47 (1H; d, \(J=3.2\) Hz; H-4); 7.23 (1H; d, \(J=3.2\) Hz; H-5); 5.51 (1H; t, \(J=6\) Hz ; OH); 4.13 (2H; d, \(J=6\) Hz; CH_2).

IR (cm\(^{-1}\)): 3280-3400 (OH, alcohol); 1700 (CO, amide); 1580 (C=C, aromatic).

Mass m/z (%): 158.2 (30); 100.1 (100); 58.1 (22).

2,2- dimethyl- 5-oxo- 1,3- dioxolane (glycolic acid acetonide) 1

This compound was prepared by some modifications in the reported method (6). To a solution of glycolic acid (6.77 gr 0.089 mole) in dry acetone (40 mL) was added conc. sulfuric acid (1 mL) at –5 °C and the mixture was stirred at –5 °C for 30min. The mixture was then added into crushed ice, neutralized by the gradual addition of sodium bicarbonate powder and extracted by dichloromethane (100 mL). The organic layer was dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure to give 3.2 gr (48%) of an oil which was pure by TLC examination (EtOAc).

\(^1\)HNMR(6) (CDCl_3): 4.35 (2H; s; H-4); 1.50 (6H; s; CH_3).

IR (cm\(^{-1}\)): 3000, 2960 (CH, aliphatic); 1800 (CO, acetonide).

General Procedure for the synthesis of Glycolamides 3_b-n

For the preparation of glycolamides \(3_{c-g}\) and \(3_{a-n}\), 1 mmole (0.11 6gr) of 5-oxo-2,2-dimethyl-1,3-dioxolane 1 (glycolic acid acetonide) (6) and for the preparation of glycolamide \(3_1\), 2 mmole (0.232 gr) of glycolic acid acetonide 1 with 1 mmole of appropriate amines (5) were stirred at room temperature under argon for 12 hrs. Except for \(3_1\) which was pure and needed no further purification, the resulting mixture was dissolved in chloroform (5 mL), the obtained solution was washed successively with 3N HCl (5 mL), water (5 mL) and dried over anhydrous MgSO_4. The residues after evaporation of the solvent were subjected to column chromatography on silica gel or crystallized from organic solvents to obtain pure compounds. In the case of amides \(3_{a-n}\) residues after evaporation of the solvent were pure and used for antimycobacterial evaluation without further purification.

\(N\)-(hydroxyacetyl)-Ethanolamine 3_b

Column chromatography of the residue (MeOH) gave pure product as an oil.

Yield: 0.1 gr (10%).

\(^1\)HNMR(6) (DMSO): 7.65 (1H; s; amide NH); 5.60 (2H; s; OH); 4.80 (1H; s; OH); 3.78 (2H; s; glycolyl CH_2); 3.42 (2H; t, \(J=5.6\) Hz; CH_2); 3.17 (2H; q, \(J=5.6\) Hz; CH_2).

IR (cm\(^{-1}\)): 3220-3480 (OH, alcohol); 1640 (CO, amide).

Mass m/z (%): 120.2 (62); 88.1 (100); 76.2 (100); 70.2 (60).

\(N\)-(hydroxyacetyl)-2-amino-1-butanol 3_c

This compound was crystallized from EtOAc to obtain pure product.

Yield: 0.51 gr (40%); m.p.: 80-82 °C.

\(^1\)HNMR(6) (DMSO): 7.28 (1H; d, \(J=8\) Hz; amide NH); 5.50 (1H; s; OH); 4.54 (1H; s; OH); 3.79 (2H; s; glycolyl CH_2); 3.65 (2H; m; H-
N-(hydroxyacetyl)-Diethanolamine 3d
Column chromatography of the residue (MeOH) gave pure product as an oil.
Yield: 0.2 gr (15%).

1HNMR(δ (DMSO) : 4.80 (2H; s; OH); 4.30 (1H; s; OH); 4.12 (2H; s; glycolyl CH₂); 3.53 (4H; m; CH₂); 3.36 (2H; t, J = 5.6 HZ; CH₂); 3.26 (2H; t, J = 5.6 HZ; CH₂).

IR (cm⁻¹): 3200-3520 (OH, alcohol); 1640 (CO, amide).
Mass m/z (%): 164.2 (45); 132.2 (85); 120.1 (100); 74.1 (100).

1-(hydroxyacetyl)-Pyrrolidine 3e
Column chromatography of the residue (hexane-chloroform, 7:3 → 5:5 → chloroform only) gave pure product.
Yield: 0.48 gr (20%); m.p.: 40 °C (Reference 8 m.p. 42-44°C).

1HNMR(δ (CDCl₃) : 4.08 (2H ; s ; glycolyl CH 2); 3.59 (1H; s; OH); 3.54 (2H; t, J = 6.4 HZ; CH 2); 3.29 (2H ; t, J = 6.8 HZ ; CH 2) ; 1.99 (2H ; qu, J = 6.4 HZ ; CH2) ; 1.90 (2H ; qu, J = 6.8 HZ ; CH2).

IR (cm⁻¹): 3200-3480 (OH, alcohol); 1640 (CO, amide).
Mass m/z (%): 129.2 (37); 98.2 (100); 55.1 (57).

1-(hydroxyacetyl)-Piperidine 3f
TLC of the residue (EtOAc) confined purity of the product.
Yield: 0.37 gr (30%); m.p.: 39-40 °C (Reference 8 m.p. 39-41°C).

1HNMR(δ (CDCl₃) : 4.14 (2H; s; glycolyl CH₂); 3.76 (1H; s; OH); 3.54 (2H; t, J= 6.4 HZ; CH₂); 3.29 (2H; t, J = 6.8 HZ; CH₂); 1.99 (2H; qu, J = 6.4 HZ; CH₂); 1.90 (2H; qu, J = 6.8 HZ; CH₂).

IR (cm⁻¹): 3400-3440 (OH, alcohol); 1650 (CO, amide).
Mass m/z (%): 143.3 (59); 112.2 (100); 69.2 (95).

4-(hydroxyacetyl)-Morpholine 3g
The residue was crystallized from EtOAc to obtain pure product.
Yield: 2.18 gr (30%); m.p.: 80-83 °C. (Reference 8 m.p. 80-82°C).

1HNMR(δ (CDCl₃) : 4.17 (2H; s; glycolyl CH₂); 3.70 (6H; m; CH₃); 3.62 (1H; s; OH); 3.29 (2H; t, J = 4.8 HZ; CH₂).

IR (cm⁻¹): 3420 (OH; alcohol); 1650 (CO, amide).
Mass m/z (%): 189.2 (38); 156.3 (47); 157.1 (100); 99.1 (87); 70.1 (53).

4-hydroxy-1-(hydroxyacetyl)-Piperazine 3i
The residue was crystallized from EtOAc to obtain pure product.
Yield: 0.27 gr (20%); m.p.: 116-118 °C.

1HNMR(δ (CDCl₃) : 4.18 (2H; d, J=4.8HZ; glycolyl CH₂); 4.02 (1H; m; CH₂); 3.673 (1H; t, J=4.8 HZ; OH); 3.50 (1H ; m ; CH); 3.38 (1H ; CH) ; 3.09 (2H; m; CH₂); 1.90 (2H; m; CH₂);
1.63 (1H; s; OH); 1.56 (2H; m; CH₂).
IR (cm⁻¹): 3200-3480 (OH, alcohol); 1640 (CO, amide).
Mass m/z (%): 159.3 (52); 128.2 (100); 84.2 (52); 57.2 (45).

3-hydroxy-1-(hydroxyacetyl)-piperidine 3m
The residue was crystallized from EtOAc to obtain pure product.
Yield: 0.14 gr (10%); m.p.: 66-68 °C.
₁H NMR (δ) (CDCl₃): 4.18 (2H; d, J=4.8 HZ; glycolyl CH₂); 3.70 (1H; bs; OH); 3.59 (1H; dd, J=6.4,10.4 HZ; CH); 3.45 (1H; dd, J=2.8,13.2 HZ; CH); 3.19 (2H; m; CH₂); 2.34 (1H; s; OH); 1.90 (2H; m; CH₂); 1.52 (2H; m; CH₂).
IR (cm⁻¹): 3200-3480 (OH, alcohol); 1640 (CO, amide).
Mass m/z (%): 159.2 (18); 128.2 (45); 84.2 (100); 43.1 (88).

4-(hydroxyacetylamino)-morpholine 3o
The residue was crystallized from EtOAc to obtain pure product.
Yield: 0.28 gr (20%); m.p.: 139-141 °C.
₁H NMR (δ) (DMSO): 4.24 (1H; t, J=6 HZ; OH); 4.12 (2H; d, J=6 HZ; glycolyl CH₂); 3.61 (4H; t, J=4.8 HZ; CH₂); 2.74 (4H; t, J=4.8 HZ; CH₂).
IR (cm⁻¹): 3360 (NH, amide); 3200 (OH, alcohol); 1660 (CO, amide).
Mass m/z (%): 161.2 (10); 101.1 (100); 55.1 (45).

###RESULTS AND DISCUSSION
From the MIC values of the tested compounds listed in Table 1, it appears that in comparison with ethambutol as the reference drug (MIC = 5) with the exception of 3c (MIC = 29.5) other monosubstituted amides displayed weak activity (MIC > 50) and most of disubstituted amides showed moderate activity (MIC < 15). While higher activities of disubstituted amides 3d (MIC = 12.5), 3g (MIC = 13.75), 3k (MIC = 14.25) and 3h (MIC = 15.75) in comparison with those of 3e (MIC = 25.5) and 3f (MIC = 38.75) may be attributed to higher hydrophilicity of these compounds, amide of 3-hydroxy piperidine 3m (MIC = 60) was less active than the corresponding analogue without hydroxyl substituent (3f, MIC = 38.75).

Electron withdrawing effect and/or specific interaction of the hydroxyl group may be responsible for this decreased in activity and it may be speculated that parameters other than hydrophilicity such as electronic and steric parameters might have influences on the activity.

Although the MIC value of the most active compound (3d, MIC = 12.5) is not comparable to that of ethambutol as the reference drug, (MIC = 5), the ease of their synthesis enable facile development of this group of compounds as effective agents for tuberculosis chemotherapy.

###ACKNOWLEDGEMENT
Author would like to thank Deputy of the Research of Tehran Medical Science University for the financial support of this investigation.

###REFERENCES