¹GHOLAM HOSEIN SHAHIDI BONJAR, ²ASHRAF KARIMI NIK, ³MOHAMMAD REZA HEYDARI, ⁴MOHAMMAD HASSAN GHASEMZADEH, ⁵PARVIN RASHID FARROKHI, ⁶MAHMOOD REZA MOEIN, ⁷SHAHLA MANSOURI AND ⁸ALIREZA FOROUMADI

¹Department of Plant Pathology, College of Agricultural Sciences, Bahonar University of Kerman, ²Department of Microbiology, College of Sciences, University of Azad, Kerman, ³Food and Cosmetic Control Office of Fars Province, Shiraz, ⁴Fars Curing Management, Shiraz, ⁵Department of Agronomy and Plant Breeding, College of Agricultural Sciences, Bahonar University of Kerman, ⁶Department of Pharmacognosy, School of Pharmacy, Shaheed Beheshti University of Medical Sciences, ⁷Department of Microbiology, College of Medicine, Kerman University of Medical Sciences, ⁸Department of Medicinal Chemistry, School of Pharmacy, Kerman University of Medical Sciences, Iran

ABSTRACT

The use of plants in treatment of burns, dermatophytes, and infectious diseases is common in traditional medicine of Iran. Based on ethno pharmacological and taxonomic information, antibacterial activities of methanol extracts of some medicinal plants of Iran were determined by *In Vitro* bioassays using agar diffusion-method against standard strains of *Pseudomonas aeruginosa*, *P. fluorescens, Bacillus subtilis, B. cereus* and *B. pumilis* at 20 mg/ml. From 180 plant species of 72 families, 78 species (43.3%) in 42 families (58.3%) showed antibacterial activities against *B. cereus* (88.4%), *B. subtilis* (39.7%), *B. pumilis* (37.1%), *P. fluorescens* (37.1%) and *P. aeruginos* (10.2%). The most active plant families were Apiaceae, Compositae and Labiatae with 9, 8 and 7 active plant species respectively. Minimum inhibitory concentrations (MIC) of the active plants were determined using two fold serial dilutions. Most active plant against Bacilli was *Myrtus communis* L. with MIC of 1.87 mg/ml. For Pseudomonas species, *Dianthus caryophyllus* L. and *Terminalia chebula* (Gaertner) Retz. were more active with the MIC of 0.46 mg/ml for *P. fluorescens* and of 1.87 mg/ml for *P. aeruginosa* respectively.

Keywords: Antibacterial activity, Plant extracts, Iranian Medicinal Plants, Bacillus, Pseudomonas.

INTRODUCTION

Over the past 20 years, there has been a lot of interest in the investigation of natural materials as sources of new antibacterial agents. Different extracts from traditional medicinal plants have show been tested. Many reports the effectiveness of traditional herbs against microorganisms, as a result, plants are one of the bedrocks for modern medicine to attain new principles (1). In this regard, plants have given western pharmacopoeia about 7000 different pharmaceutically important compounds and a number of top-selling drugs of modern time, e.g. quinine, artemisinin, taxol, camptothecin, etc. (2). Until natural products have been approved as new antibacterial drugs, there is an urgent need to identify novel substances active towards highly resistant pathogens (3, 4). In Iranian

traditional medicine (ITM) the use of plants in burns, dermatophytes, treatment of and infectious diseases or as antiseptic and antiinflammatory was common (5). P. aeruginosa is the most prevalent burn-patients pathogen capable of causing life-threatening illnesses (6). This bacterium can cause clinically significant infections such as wounds and burns infections, giving rise to blue-green pus; also meningitis, when it is introduced by lumbar puncture; and urinary tract infection when introduced by catheters and instruments or irrigating solutions (7). In infants or debilitated persons, the bacterium may invade the bloodstream and result in fatal sepsis (6). Some strains causing septicemia and pneumonia in cystic fibrosis and immunocompromised patients are becoming difficult to treat with currently available

Correspondence: Gholamhosein Shahidi Bonjar, Department of Plant Pathology, College of Agricultural Sciences, Bahonar University of Kerman, Kerman, Iran, E-mail: shahidi@mail.uk.ac.ir

antimicrobial agents (8). This organism is one of the most common pathogens associated with bacterial corneal ulcers. Keratitis due to this pathogen also has been observed in those who wear extended-wear contact lenses (6). Due to multi-resistancy of *P. fluorescens*, there is a lack of active antibiotics effective against this in bacterium. resulting increase an in nosocomial infections and high mortality (9). The bacterium is an opportunist associated with respiratory and urinary tract, wounds, and bacteremia (7). B. subtilis occasionally produces disease such as meningitis, endocarditis, endophthalmitis, conjunctivitis, or acute gastroenteritis in immunocompromised patients. B. cereus is a spore forming pathogen associated with various opportunistic clinical infections (10). It has also been associated with food borne diseases caused by toxins. It is present in readyto-eat vegetable-based foods (11). B. pumilis is an environmental contaminant (12), which was this study included in to get more comprehensive evaluation of spectral activity of the plants.

In a two-year study, a survey was set to screen antibacterial activity of some plants used in ITM in curing various maladies. Based on the information gathered from ethnopharmacologists, herbal-drug sellers and rural nativehealers, the plant organs used in this study were as used in ITM.

Many investigations have also been reported detection of antibacterials from plants in recent years. From methanolic extracts of 100 plants, used by British Colombian Native People, against 11 bacterial isolates, 85% of the plants were found to have antibacterial activity (13). In another study from 27 medicinal plant extracts of Rubiaceae 11 plants were found to be active (14). In one study in Kerman (South east of Iran) antibacterial activity of crude extract of Myrtus communis against 10 laboratory strains of bacteria was evaluated. The crude extract of this plant inhibited the growth of all tested bacteria except Campylobacter jejuni (15). Antibacterial activity of Ficus racemosa Linn. leaf extracts against E. coli, B. pumilis and B. subtilis has also been reported (16).

In the present study methanol extracts of 180 plant species in 72 families at 20 mg/ml were tested against standard strains of *P. aeruginosa*, *P. fluorescens*, *B. subtilis*, *B. cereus* and *B. pumilis*, by agar diffusion method.

MATERIALS AND METHODS

Plant material and extraction procedure

The medicinal plants used in this study were collected from different regions of Iran from April to August of 1995- 2001 and identified by P. Rashid Farrokhi at the Herbarium of Plant Systematic Laboratory of the College of Agricultural Sciences, Bahonar University of Kerman, Iran where a voucher specimen was deposited. Sixteen species which are used but do not grow in Iran or were not found in the collection areas were obtained from the local stores in Kerman city and identified at the mentioned laboratory. The fine powder of air dried specimens were extracted three times with boiled methanol and the extracts were then concentrated under reduced pressure to yield a dense residue (17, 18). Each sample was transferred to glass vials and kept at 4° C before the use.

Antibacterial Screening

The following standard bacterial strains were used as test microorganisms and obtained from Persian Type Culture Collection (PTCC), Tehran, Iran. Pseudomonas aeruginosa (PTCC No. 1074), P. fluorescens (PTCC No. 1181), Bacillus subtilis (PTCC No. 1023), B. cereus (PTCC No. 1015) and B. pumilis (PTCC No. 1319). The bacteria were rejuvenated on Mueller-Hinton-Agar medium (MH, E. Merk, Germany) and subcultured as it was required. For bioassays, suspension of approximately 1.5×10^8 cells/ml in sterile normal saline were prepared as described by the reported methods (19), and about 1.5 ml of each sample was uniformly seeded on MH in 9 x 1.2 cm glass Petri dishes, left aside for 15 min and excess of suspension was then drained and discarded properly. Wells of 6 mm in diameter and about 2 cm apart were punctured in the culture media using sterile cork borers. As a precaution for not missing any trace amounts of antimicrobials, a relatively high concentration of 20 mg/ml of each extract was prepared in dimethyl sulfoxide (DMSO): methanol (1:1, v/v) solvent (DM solvent) and administered to fullness in each well. Culture plates, were incubated at 37° C in the case of P. aeruginosa and B. subtilis, and at 29 °C in the case of P. fluorescens, B. cereus and B. pumilis. After 48 hr bioactivity was determined by the measurement of the diameter of inhibition zones (DIZ) in mm. All samples were tested in triplicate. Controls had solvent (DM) without test compounds.

Table 1. Evaluation of antibacterial activity, indicated by diameter of inhibition zones (DIZ, mm), of plants used in Iranian native medicine against Bacillus subtilis, B.

							9		c		р		e
Plant family	Plant species	English common name	OT	DIZ	MIC								
Anacardiaceae	Rhus coriaria L.	Tanner's sumac	SE	19	1.87	17	3.75	18	3.75				
Anacardiaceae	Semecarpus anacardium L. f.	Markingnut tree	LE	12	15	12	20	12	15	10	15	10	15
Apiaceae	Apium graveolens 1.	Wild celery	LE			10	20						
Apiaceae	Anethium graveolens L.	Dill; dillweed	FR	13	15							12	7.5
Apiaceae	Coriandrum sativum L.	Chinese parsley	SE	10	20	6	20						
Apiaceae	Cuminum cyminum L.	Cumin	FR	10	20	18	3.75	6	20				
Apiaceae	Foeniculum vulgare P. Mill. Syn. F. foeniculum	Sweet fennel	RO	10	20	12	15						
Apiaceae	Heracleum tuberosum Molina.	Yellow cow-parsnip	FR	10	20	18	7.5						
Apiaceae	Pimpinella anisum L. Syn. Anisum vulgare	Anise burnet	SE	12	15	24	0.93						
Apiaceae	Trachyspermum ammi (L.) Link		SE	10	20			10	20	Ξ	15		
Apiaceae	Trachyspermum copticum Link	Trachyspermum	SE	15	3.75	17	1.87	12	15				
Berberidaceae	Berberis georgii Ahrendt.	Barberry	FR					6	20				
Berberidaceae	Berberis vulgaris L.	Barberry	FR	12	15	15	3.75	10	20				
Boraginaceae	Borago officinalis L.	Borage	FL					10	20			12	15
Boraginaceae	Echium vulgare L.	Viper's bugloss: blue devil; blueweed	FL			6	20						
Caryophyllaceae	Dianthus caryophyllus L.	Carnation	WP	17	1.87	15	7.5	15	3.75	12	3.75	18	0.46
Colchicaceae	Colchicum Inteum Bak.	Yellow autumn crocus	WP			6	20						
Combretaceae	Terminalia chebula (Gaertner) Retz.	Myrobalan	RS	13	7.5	16	3.75	16	3.75	16	1.87	18	0.93
Combretaceae	Terminalia chebula (Gaertner) Retz.	Myrobalan	NS			16	7.5	14	7.5	14	7.5	14	7.5
Compositae	Anthemis nobilis (L.) All.	Camomile	FL					10	20				
Compositae	Anthemis arvensis L.	Corn chamomile	FL			10	20						
Compositae	Arctium lappa L. Syn. Lappa major	Great burdock	RO			10	20						
Compositae	Calendula officinalis L.	Pot marigold	FL			6	20	6	20				
Compositae	Carthanus tinctorius L.	Safflower, bastard, false saffron	EL			11	7.5						
Compositae	Echinops exaltatus Schrad., Syn. E. commutatus	Tall globethistle	ΓE			10	20						
Compositae	Marticaria chamomilla L.	Marticaria	FL	•		6	20	10	20	_		H	15

159

Cruciferae	Lepidium campestre (L.) Ait. f. Svn. Neolepia campestris: Thlaspi campestre	Pepperwort	LE			10	20						
Cruciferae	Raphanus sativus L	Wild radish	SE					10	20				
Cucurbitaceae	Citrullus coloccynthis (L.) Schrad. Syn. Colocynthis vulgaris, Cucumis colocynthis	Colocynth	FR			6	20						
Cuscutaceae	Cuscuta epithymum L.	Clover dodder	SE			14	15						
Ephedraceae	Ephedra intermedia Schrenk. ex C.A.Mey.	Ephedra	ΓE	13	7.5	16	3.75	14	7.5	10	15	13	2.5
Euphorbiaceae	Chrozophora tinctoria (L.) A. Juss.	Giradol	ΓE			12	20	12	20				
Fabaceae	Glycyrrhiza glabra L.	liquorice	RO	18	3.75	18	3.75						
Graminae	Bromus biebersteinii Roemer & J.A. Schultes Svn. Bromopsis biebersteinii	Meadow brome.	RO			10	20						
Iridaceae	Iris sp. L.	Iris	RO					10	20				
Juglandaceae	Juglans regia 1.	English walnut	FL			10	20						
Labiatae	Mentha longifolia (L.)Huds.	Horsemint	TE			10	20						
Labiatac	Nepeta mussinii Henckel	Persian catmint	RO					10	20				
Labiatac	Nepeta mussinii Henckel	Persian catmint	ΓE			10	20	6	20				
Labiatae	Origanum majorana L. Syn. Majorana hortensts, M. majorana	Sweet marjoram	LE		13	10	20						
Labiatae	Salvia officinalis L	Sage	WP	11	20	12	15						
Labiatae	Stachys officinalis (L.) Trev. Syn. Betonica officinalis	Wood betony	TE			6	20						
Labiatac	Thymus vulgaris L.	Thyme	WP	10	20	12	15						
Lauraceae	Cinnamomum zeylanicum BL.	Cinnamon	SB	17	3.75	22	0.93	18	3.75				
Leguminosae- Caesalpinioideae	Cassia fistula L. Syn. C. fistulosa	Golden shower	FR			16	7.5						
Leguminosae- Papilionoideae	Alhagi maurorum Medik. Syn. A. camelorum, A. pseudalhagi	Camel thorn	SG	10	20	15	7.5						
Leguminosae- Papilionoideae	Astragalus glycyphyllos L.	Milk vetch	SG			6	20						
Leguminosae- Papilionoideae	Trigonella foenum-graecum L.	Sicklefruit fenugreek	SE			19	1.87						
Lythraceae	Lawsonia inermis L. Syn. L. alba L.	Henna	LE			26	0.46					17	0.46
Malvaceae	Althaea officinalis L.	Marsh mallow	FL			10	20					11	7.5
Malvaceae	Malva sylvestris L. Syn. M. Mauritiana	High mallow	FL	10	20								
Myristicaceae	Myristica fragrans Houtt.	Nutmeg	SE	13	20	20	3.75						
Myrtaceae	Eucalyptus globulus Labill.	Tasmanian bluegum	E	6	20	19	7.5						
Myrtaceae	Myrtus communis L.	Myrtle	LE	22	1.87	26	0.93	20	1.87	11	7.5	16	1.87

Shahidi Bonjar et al

160

Myrtaceae	Myrtus communis L	Myrtle	ΓE	22	1.87	26	0.93	20	1.87	Ξ	2.5	16	1.87
Myrtaceae	Myrtus communis L.	Myrtle	SE	12	15	14	7.5	14	7.5	=	7.5	16	1.87
Nymphaeaceae	Nymphaea alba L.	White water hily	Η			6	20			10	15		
Papaveraceae	Papaver bracteatum Lindley	Oriental poppy	EL			10	20						
Peganaceae	Peganum harmala L.	Harmal peganum	SE			18	3.75	10	20				
Polygonaceae	Rheum ribes L.	Currant-fruited rhubarb	RO	18	3.75	19	1.87	17	1.87				
Polygonaceae	Rumex acetosa L.	Sour dock	ΓE			10	20						
Portulacaceae	Portulaca oferacea L.	Pussley; pusley	SE			10	20						
Punicaceae	Punica granatum L.	Pomegranate	FL			17	3.75						
Ranunculaceae	Nigella sativa L.	Black cumin	SE			18	3.75						
Ranunculaceae	Ranunculus aestivalis (L. Benson) Van Buren & Harper	Summer buttercup	WP	11	20	13	15	10	20				
Rhamnaceae	Zrziphus jujube Mill. Syn. Z. sativa; Z. vulgaris; Z. zizyphus; R. zizyphus; Z. jujba	Jujube	FR	10	20	6	20	10	15				
Rosaceae	Cydonia oblonga P. Mill. Syn. C. vulgaris; Pyrus cydonia	Quince .	SE			6	20						
Rosaceae	Rosa gallica L.	Gallica Roses	SE			10	20						
Rosaceae	Rubus idaeus L. Syn. R. greeneanus	Red raspberry	LE	13	15	12	20						
Rutaceae	Ruta graveolens L.	Common rue	ΓE			10	20	6	20				
Rutaceae	Citrus medica L.	Citron	SE			15	15						
Salicaceae	Salix aegyptiaca L. Syn. S. medemii	Mediterranean willow	ΕΓ			6	20						
Smilacaceae	Smilax china L.	China root	ST	14	15	16	7.5						
Solanaceae	Capsicum annuum (Dunal) Heiser & Pickersgill	Cayenne pepper	WP			12	20						
Tamaricaceae	Tamarix gallica L.	Manna plant	ΓE			10	20						
Theaceae	Camellia sinensis (L.) Kuntze Syn. C. thea, Thea bohea	Tea plant	ΓE			10	20	10	20				
Urticaceae	Urtica gracilenta Greene	Mountain nettle	LE			10	20			10	15		
Violaceae	Viola odorata L.	Garden violet	FL			10	20						
Zingiberaceae	Alpinia officinarum Hance	Lesser galangal	FR	12	15		20	14	7.5				
Zingiberaceae	Amomum compactum Sol. Ex Maton	Round cardamom	SE	12	15	15	7.5	12	15				
Zingiberaceae	Zingiber officinale Roscoe Syn. Amomum zingiber, Z. zingiber	Ginger	RH	12	15	11	3.75	14	7.5				

(Minimum Inhibitory Concentration, mg/ml). Blank DIZs= 0, blank MICs= not tested since the corresponding DIZs were 0.

Some medical plants of Iran

161

Determination of Minimum Inhibitory Concentration

After screening the activity of plants, the active plants were re-tested to determine their minimum inhibitory concentrations (MIC). The concentrations used were two fold dilution series of 0.46-15 mg/ml in DM solvent.

RESULTS AND DISCUSSION

As it is shown in Table 1, from 180 plant species in 72 families, 78 species (43.3%) in 42 families (58.3%) showed antibacterial activities. The table also contains MIC values of the active plants measured in two fold dilution-series of 0.46-15 mg/ml. Activities of the plant extracts were as follows: B. cereus (88.4%), B. subtilis (39.7%), B. pumilis (37.1%), P. fluorescens (37.1%) and *P. aeruginosa* (10.2%). Plant families of Apiaceae with 9, Compositae with 8 and Labiatae with 7 had the highest number of active species respectively. Dianthus caryophyllus (the whole plant) was the most active plant against all tested bacterial species, with the MIC of 1.87, 7.5, 3.72, 3.75 and 0.46 mg/ml against B. subtilis, B. cereus, B. pumilis, P. aeruginosa and P. fluorescens respectively. Many plants were found to be active against Bacilli and the lowest level of MIC for B. subtilis, B. cereus and B. pumilis were 1.87, 0.93 and 1.87 mg/ml respectively. The most active plants against Bacilli were Myrtus communis, Cinnamomum zeylanicum, Rheum ribes, Rhus coriaria, D. caryophyllus, Ephedra intermedia. Terminalia chebula, Trachyspermum copticum and Zingiber officinale, T.

chebula, D. caryophyllus and M. communis were active against all tested bacteria. Highest level of activity against P. aeruginosa belongs to T. chebula (MIC= 1.87 mg/ml) and D. caryophyllus (MIC= 3.75 mg/ml). For P. fluorescens the most actives were M. communis (MIC= 1.87 mg/ml), D. carvophyllus (MIC= 0.46 mg/ml), *T. chebula* (MIC= 0.93 mg/ml) and Lawsonia inermis (MIC= 0.46 mg/ml). Since T. chebula, D. caryophyllus, and M. communis extracts were active against both Gram positive and Gram negative bacteria especially P. aeruginosa, further work is required to determine their activities on more bacterial strains isolated from clinical samples. However, search for new antibacterial agents should be continued by screening many other plant families. Iran is a big country with a vast number of medicinal plants (5) and the antimicrobial and phytochemical studies would provide valuable information to the media of the world knowledge. The present survey forms the basis for investigation on fractionation, purification, structural determination of the most promising components for In vivo evaluation of toxicity of these plants in animal and human studies.

ACKNOWLEDGMENT

Financial support of Research Affairs Office of Bahonar Univ. of Kerman is appreciated. The spiritual result of this research is dedicated to Mr. A. Afzalipour the founder of Universities at Kerman, God may bless him.

REFERENCES

- 1. Evans, C.E., Banso, A., Samuel, O.A. (2002) Efficacy of some nupe medicinal plants against *Salmonella typhi*: an in vitro study. J. Ethnopharmacol. 80: 21–24.
- Tshibangu, J.N., Chifundera, K., Kaminsky, R., Wright, A.D., Konig, G.M. (2002) Screening of African medicinal plants for antimicrobial and enzyme inhibitory activity. J. Ethnopharmacol. 80: 25–35.
- 3. Recio, M.C. (1989) A review of some antimicrobial compounds isolated from medicinal plants reported in the literature 1978- 1988. Phytother. Res. 3: 117-125.
- 4. Cragg, G.M., Newman, D.J., Snader, K.M. (1997) Natural products in drug discovery and development. J. Nat. Prod. 60: 52-60.
- 5. Ghahraman, A., Attar, F. (1998) Biological diversity of Iranian plant species. Tehran Univ. Press, Tehran, pp 24-25.
- 6. Lory, S. (1990) Pseudomonas and other Nonfermenting Bacilli. In: Davis, B.D., Dulbecco, R., Eisen, H.N., Ginsberg, H.S. (eds) Microbiology, 4th ed. Lippincott Co., Philadelphia, pp: 595-600.

- 7. Murray, P.R., Drew, W.L., Kobayashi, G.S. Thompson, J.H. (1990) Medical Microbiology, Mosby Co., Philadelphia, pp: 119-126.
- Senda, K. Arakawa, Y., Nakashima, K., Ito, H., Ichiyama, S., Shimoka, K., Kato, N., Ohta, M. (1996) Multifocal outbreaks of metallo-beta-lactamase-producing *Pseudomonas aeruginosa* resistant to broad-spectrum beta-lactams, including carbapenems. Antimicrob. Agents Chemother. 40: 349-353.
- 9. Giamarellos-Bourboulis, E.J., Grecka, P., Dionyssiou-Asteriou, A., Giamarellou, H. (1999) *In Vitro* interactions of gamma-linolenic acid and arachidonic acid with ceftazoline on multiresistant *Pseudomonas aeruginosa*. Lipids 34 (Suppl): 151-152.
- 10. Boyd, R.F. (1995) Basic Medical Microbiology, 5th ed., Little, Brown and Company, Boston, pp: 310-314.
- 11. Kaneko, K., Hayashidani, H., Ohtomo, Y., Kosuge, J., Kato, M., Takahashi, K., Shiraki, Y., Ogawa, M. (1999) Bacterial contamination of ready-to-eat foods and fresh products in retail shops and food factories. J. Food Prod. 62: 644-649.
- 12. Turnbull, P.C.B. (1991) Bacillus. In: Baron, S., Jennings, P.M. (eds) Medical Microbiology, 3rd ed. Churchill Livingstone, New York, pp: 249-262.
- 13. McCutcheon, A.R., Ellis, S.M., Hancock, R.E., Towers, G.H. (1992) Antibiotic screening of medicinal plants of the British Colombian native people. J. Ethnopharmacol. 37: 212-223.
- 14. Pederson, O., Gurib-fakim, A., Subratty, H., Andersen, A. (1999) Pharmaceutical properties of seven medicinal plants of Rubiaceae from Mauritius. Pharmaceutical Biol. 37: 202-207.
- 15. Mansouri, S., Foroumadi, A., Ghanei, T., Gholamhosseinian Najar, A. (2001) Antibacterial activity of the crude extracts and fractionated constituents of *Myrtus communis*, Pharmaceutical Biol. 39: 399-401.
- 16. Mandal, S.C., Saha, B.P., Pal, M. (2000) Studies on antimicrobial activity of *Ficus racemosa* Linn. leaf extract. Phytoter. Res. 14: 278-280.
- 17. Ashik Mosaddik, M., Kabir, K.E., Hassan, P. (2000) Antibacterial activity of *Alangium* salviifolium folwers. Fitoterapia 71: 447-449.
- 18. Ebi, G.C. (2001) Antimicrobial activities of Alchornea cordifolia. Fitoterapia 72: 69-72.
- Forbes, B.A., Sahm, D.F., Weissfeld, A.S., Trevino, E.A. (1990) Methods for testing antimicrobial effectiveness. In: Baron, E.J., Peterson, L.R., Finegold, S.M. (eds) Bailey & Scott's Diagnostic Microbiology, 8th ed. Mosby Co, St Louis, Missouri, pp: 171-194.