THE EVALUATION OF EPiphyseAL PLATE HISTOLOGICAL
CHANGES IN OSTEOPETROTIC OP/OP MICE.

*ALIGHOLI SOBHANI, **AHMAD HOSSEINI, ***MOJTABA REZAZADEH, ****KIKUJI
YAMASHITA, *****HOSEIN NIKZAD AND IRAJ RAGARDI KASHANI.

"Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences,
Tehran, Iran, **Department of Anatomy, Faculty of Medicine, Shahid Beheshti University of
Medical Sciences. Tehran, Iran, ***Department of Anatomy, Faculty of Medical Sciences,
Tarbiat Modarres University, Tehran, Iran, ****First Department of Anatomy, Faculty of
Dentistry, Tokushima University, Tokushima, Japan, *****Department of Anatomy, Faculty
of Medicine, Kashan University of Medical Sciences, Kashan, Iran.

ABSTRACT
This study was designed for evaluation of epiphyseal plate histological changes of femur bones in
osteopetrotic op/op mice. In this study 5 osteopetrotic op/op mice which were purchased from the
commercial source were used. The animals were killed by overdose of chloroform and their femur
bones were extracted. The bones were fixed in 10% formaldehyde and decalcified by HCl (0.6N), and
routine histological processing were performed. The sections were stained by H&E methods and
studied by conventional light microscopy. The results showed that, proliferative zone (PZ) and
especially hypertrophic zone (HZ) were much thickened. In the ossification zone, trabecular bones
were irregular and atypical osteoblast cells were observed. The osteoclast cells were not attached to
trabecular bones. The bone marrow cavity was restricted and bone marrow cells were poor and
scattered. Findings of the present investigation are similar to those reported about epiphyseal plate in
osteosclerotic (OC) mice in which epiphyseal plate especially hypertrophic zone was thickened and
chondrocytes were not substituted for osteoblasts in calcified cartilage area. Also, osteoclast cells had
been inactive or absent in OC mice. For prevention of other complication due to the epiphyseal plate
changes in new born, suitable and punctually treatment protocols such as prescription of Macrophage
Colony Stimulating-Factor (MCS-F) could be useful.

Key Words: Chondroblast cells, Epiphyseal Plates, Osteopetrotic OP/OP Mice

INTRODUCTION
Osteopetrosis is a rare hereditary bone
metabolic disease that was distinguished for the
first time in 1904 by Albers-Schoenberg (1) and
for this reason was called Albers-Schoenberg
disease. Also, because of the high density of
bones, some physicians called it Marble bones
or marble bone disease (2, 3). This disease
results from the lake of the activity or absence
of osteoclast cells, severe decrease of monocytes
and peritoneal macrophage due to the decrease
in Macrophage- Colony Stimulating Factor (M-
CSF) in this mutation (4, 5). Osteopetrosis
appear in different types and different ages so
have different treatment (6). The clinical
appearance of osteopetrosis because of their
accompanied immunitin and hematologic
complication is different and while some cases
die after birth because immunologic and
hematogenic disorder, others continue the life
for a long time (7, 8). The severe type of
osteopetrosis in human is distinguished 2
months after birth by optical and hematological
signs. Also, 2 types of osteopetrosis, lethal and
nonlethal, are distinguished in adult people (9).
In mice, 4 types of osteopetrotic mutation,
happen at different chromosomes, and have
been distinguished as follows: grey lethal (gl),
microphthalmic (mi), osteosclerotic (oc) and
osteopetrotic (op). The grey lethal (gl) and
microphthalmic (mi) might results to death 5
weeks after the birth (10). Four other types
mutations are discovered in rats as follows:
Incisor absent (ia), osteopetrotic (op), toothless
 tl and microphthalmic blanc (mib) (11, 12,
13). In these mutations growth plate and its
specific zones, proliferation zone, hypertrophic
zone, calcified cartilage and substitution of
chondrocytes by osteoblast cells are rare. The
growth plate in this disease is affected, normal
endochondral ossification is restricted, bone
marrow cavity is limited and bone marrow cells
are in weak condition and scattered (4, 14, 15).
Marks and his coworker arranged a project for
histologic study of epiphyseal cartilage and ultrastructure of osteoclast cells in OC mice and reported that in OC mice growth plate particular hypertrophic zone were vacant and substitution of chondrocytes by osteoblast cells were delayed (16). The chondroblast arrangement in hypertrophic zone was irregulated, cells organism and external shape in light microscopy changed atypically. Also, hypertrophic zone vascularization was in a poor condition in OC mice (16). Also, Ricket like condition in human osteopetrosis has been reported (17, 18, 19, 20) and treatment of disorders has not been successful by vitamiv D and other trials protocols treatment in human osteopetrosis (21). For evaluation of superior epiphyseal plate histologic changes of femur bone, this study was designed on osteopetrotic op/op mice.

MATERIALS AND METHODS

In the present investigation, 40 days osteopetrotic op/op mice were purchased from Jackson laboratory (Bar Harbor Me USA). The animals were dieted by special soft nutrition at the animal house for one week and standard health conditions were arranged. For histological studies animals were killed by chloroform overdose and the femur bones were extracted. The harvested specimens were repeatedly fixed by 10% formaldehyde solution for one week and decalcified by HCl (0/6 N) for 2 weeks. The upper epiphyseal plate region was dissected. After routine histological processing the selected part of femur bone were embedded in hard paraffin longitudinally and were sectioned at 6 micron thickness (17). The sections at intervals of 60 micron were stained with Hematoxilin and Eosin (H&E). By the above-mentioned condition sections were prepared from normal animals and stained by H&E. Also, semi thin sections were prepared and stained by Toluiden blue for 2 groups. The slides were studied microscopically and photos were obtained.

RESULTS

In osteopetrotic op/op group by Hematoxilin and Eosin staining sever thickness of proliferative zone (PZ) and especially Hypertrophic zone (HZ) in longitudinal view were observed in contrast to control group (Fig 1a, 1b). The normal columns of chondroblasts, in the hypertrophic zone (HZ), were changed and regulated in the op/op groups (Fig 2a, 2b). The chondrocytes by Hematoxilin and Eosin staining were appeared vacant at calcified cartilage (CC) region in osteopetrotic op/op mice (Fig 3a, 3b). Osteoblast cells were abnormal in external morphology, and typical epitheloid osteoblast cells were not observed and regulation of trabecular bones in op/op mice were destroyed (Fig 3a, 3b). Bone marrow cavities in experimental group were very restricted and bone marrow cells were poor and scattered. Also, no osteoclast cells in op/op group could be detected (Fig 3a, 3b). By toluiden-blue staining, the chondrocytes in terminal portion of hypertrophic zone were large and were accompanied by reach granules (Fig 4a, 4b).

DISCUSSION

Osteoporosis is a rare congenital disorder which is observed in one of 20000 children. It prevents formation of bone marrow cells and results in abnormal long bone development, blindness (22), stunted growth, abnormal dental development and fragile bones (23). Radiologically, this disease is characterized by generalized increases in skeletal density in which bones look solid on X-ray with defect in metaphiseal modeling (24, 25). Sever forms of osteopetrosis have been described with overlapping of clinical and radiographic features (25). Irregular conditions of the bone at the metaphyses may produce the appearance of parallel plates of dense bone at the end of long bones (16). In this investigation, sever thickness of proliferative zone (PZ) and especially hypertrophic zone (HZ) of growth plate were observed. These findings resemble to the rickets condition that has been explained by other investigations (20, 26) and in other type of osteoporosis (27). The chondrocytes by H&E staining appeared vacant and was accompanied with granules by Toluiden blue staining. Marks and his coworkers by arrangement of the results of histological study of epiphyseal plate in oc mice reported similar results (28). In this investigation typical epitheloidal osteoblasts cells were not observed and regulation of trabecular bones were destroyed. Poppof has reported this characters in rabbits (29). In the present investigation bone marrow cavity was restricted and marrow cavities cells deficiency were similar to those of previous reports (30, 31). Osteoclast cells attached to bone trabeculae at present study could not be distinguished. Recently, Amling and his coworker reported that, in the absence of bone resorption because of osteoclastic function, bone formation continues and leads to progressive accentuation of the osteopetrotic phenotype in c-src-deficient mice (32). According to Nomura and his coworker idea, osteoclast normal function was dependent to the presence of a target gene for
Epiphyseal plate histological changes evaluation

Microphthalmia mutation (Mi) that is essential for the proliferation/differentiation of osteoclasts (33). It is believed that decrease in the amount of macrophage colony stimulating factor in these mutations, cause absence or inactivity of osteoclast cells (34, 35, 36, 37, 38).

REFERENCES

Figure 1 - Light microscopic view from longitudinal section of proximal epiphysseal plate (Femur) in osteopetrotic op/op (a) and normal animals (b). The proliferative zone (PZ) and especially Hypertrophic Zone (HZ) in osteopetrotic op/op mice is too thickened in contrast to normal animals. Also, Trabecular bone (TB) is irregular in op/op mice.

Staining: Hematoxilin and Eosin
Original magnification: X100

Figure 2 - Light microscopic view from longitudinal section of proximal epiphysseal plate (Femur) in osteopetrotic op/op (a) and normal animals (b). The trabecular bones (TB) in osteopetrotic op/op mice are irregular in contrast to normal animals. Normal typical epitheloidal osteoblast cells were not shown in op/op group. Bone marrow cavities (BM) are restricted and bone marrow cells are not enough in op/op group.

Staining: Hematoxilin and Eosin.
Original magnification: X 200

Figure 3 - High magnified light microscopic view from longitudinal section of proximal epiphysseal plate (Femur) in osteopetrotic op/op (a) and normal animals (b). The chondrocytes in calcified cartilage (cc) region were observed vacant in op/op group by Hematoxilin and Eosin staining. The trabecular bone (TB) is irregular and normal epitheloidal osteoblast cells are not appeared in op/op group. Osteoclast cells are not shown in op/op group.

Staining: Hematoxilin and Eosin.
Original magnification: X400

Figure 4 - Light microscopic view from longitudinal section of proximal epiphysseal plate (Femur) in osteopetrotic op/op (a) and normal animals (b). The chondrocytes in terminal portion of hypertrophic zone (HZ) in the region of calcified cartilage (cc) is accompanied by some granules in op/op group. But, in normal animals these granules have never did not appear.

Staining: Toluidin Blue.
Original magnification: X400