ASSESSMENT OF DIFFERENT BIOEQUIVALENCE METRICS IN RIFAMPIN BIOEQUIVALENCE STUDY

MOHAMMAD REZA ROUNI, HOSNIEH TAJEZADEH and MAHBOUH VALADKHANI

Division of Biopharmaceutics, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

ABSTRACT

The use of secondary metrics has become of special interest in bioequivalence studies. The applicability of partial area method, truncated AUC and $C_{\text{max}}$/AUC has been argued by many authors. This study aims to evaluate the possible superiority of these metrics to primary metrics (i.e. AUCinf, $C_{\text{max}}$ and $T_{\text{max}}$). The suitability of truncated AUC for assessment of absorption extent as well as $C_{\text{max}}$/AUC and partial AUC for the evaluation of absorption rate in bioequivalence determination was investigated following administration of same product as test and reference to 7 healthy volunteers. Among the pharmacokinetic parameters obtained, $C_{\text{max}}$/AUCinf was a better indicator of absorption rate and the AUCinf was more sensitive than truncated AUC in evaluation of absorption extent.

Keywords: Bioequivalence, Secondary metrics, Truncated AUC, Partial area method, $C_{\text{max}}$/AUC, Rifampin

INTRODUCTION

Bioequivalence of two formulations of a drug with systemic effect is demonstrated when the plasma (or other biological fluids) concentration-time profiles are sufficiently similar. Ratios of test to standard area under the curves (AUC) have been widely used to determine the equivalence of the extent of absorption. It has been claimed that for complicated absorption models, the use of AUCinf (AUC from zero to infinity) is erroneous (1). The calculation of AUCinf also involves prolonged sampling. In addition of costs, risks and insensitivity associated with bioequivalence studies for some drugs like hydroxychloroquine with t½ > 50 days collection of samples for several months is required (2). Thus it has been suggested that in such conditions truncated AUCs are better indicators of bioequivalence of generic products than the total AUC (1-4). The peak drug concentration ($C_{\text{max}}$) and time to peak ($T_{\text{max}}$) obtained from plasma and/or serum concentration-time profiles have been utilized as a measure of the rate of absorption. In practice, these parameters are determined experimentally which heavily depend to sampling time schedule (3). $T_{\text{max}}$ is a discrete parameter and there is a lack of statistical methods for $T_{\text{max}}$ comparisons. Therefore, $C_{\text{max}}$ becomes the only parameter used for estimation of absorption rate in most cases. The use of $C_{\text{max}}$ for bioequivalence assessment seems inappropriate, since in addition of being insensitive and nonspecific in the assessment of absorption rate it reflects also the extent of absorption (5). Another parameter, $C_{\text{max}}$/AUC has been recommended as a metric of enhanced specificity, since it is independent of the extent of absorption (6-8) and also has smaller variation than $C_{\text{max}}$ (8-9). However the superiority of $C_{\text{max}}$/AUCinf or $C_{\text{max}}$/AUCinf (AUC from zero to last quantifiable concentration) is under question (5,10). So far, evaluation of bioequivalence metrics has been investigated by simulation methods (5,11,12) or by using two different formulations which, at first their bioequivalency should be cleared. Using one product as both test and reference products makes it possible to be sure of bioequivalence and using real experimental data, therefore the precise evaluation of different metrics would be possible. In this study Rifampicin-Hefa, 150 mg (Hefa Pharma-Germany) was used as test and reference product. This experiment was instructed to investigate the priority of the above parameters in bioequivalence evaluation.

MATERIALS AND METHODS

Materials

Pure rifampin and ascorbic acid were kindly donated by Alborz Co. (Iran) and Daroupaksh (Iran) respectively. HPLC grade acetonitrile and...
analytical grade KH₂PO₄ and double distilled water were also used throughout the study.

**Instrumentation**

HPLC system consisted of a Waters Model 600 E pump and a Rheodyne (7725i, California, USA) injection valve fitted with a 20 μl sample loop. The effluent was monitored at 334 nm with a Waters Model 486 variable wavelength UV detector. Separation was performed at ambient temperature on a Nucleosil C8 analytical column (5 μm, 150×3.9 mm) preceded by a guard pack module with a C8 insert (Waters). The mobile phase consisted of acetonitrile: KH₂PO₄ (100 mM, pH 4), 34:66 V/V with the flow rate of 0.7 ml/min. Peak areas were measured using a Waters Model 746 integrator.

**Human study**

Seven healthy adult volunteers, aged 23-40 years, and weighing between 60-80 kg were selected. A complete medical history, physical examinations, urine analyses and hematology were obtained from all volunteers before initiation of study. The volunteers were instructed to abstain from taking any medication for 1 week before and during the study period. They were administered the same product, Rifampicin Hefa 150 (HeFa Pharma, Germany), as both test and reference in two different periods. This would eliminate the subject by formulation effect. Volunteers given their written consent were received rifampin capsules (300 mg) after an overnight fasting. The washout period was considered 10 days. Blood samples were obtained at 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10 and 12 hr intervals and serum rifampin concentration after protein precipitation by acetonitrile, were determined as described by Ishi and Ogata (13) with slight modification.

**Data analysis**

The linear trapezoidal rule that used for calculation of AUC₀ₐ and the AUC₀₋∞ was estimated by extrapolation. The AUC₀ₐ was thus the sum of AUC₀ₐ and AUC₀₋∞. In order to evaluate the bioequivalence, parameters of Cₘₐₓ, Tₘₐₓ, AUC₀ₐ, AUC₀₋ₐ, Cₘₐₓ/AUC₀ₐ, Cₘₐₓ/AUC₀₋ₐ, AUC₀₂ₐₐ and AUC₀₂₋ₐₐ were calculated.

**RESULTS AND DISCUSSION**

The mean serum profiles of rifampin for two periods of study are shown in Fig. 1. The mean pharmacokinetic parameters calculated in two periods of study and 90% confidence interval for their mean ratios and P values of paired t-test for mean of pharmacokinetic parameters are summarized in table 1. The parameters AUC, Cₘₐₓ and Tₘₐₓ have been widely used for assessing bioequivalence in generic products. According to report of Niazi et al (1) for most uncomplicated absorption models, the AUC correlates well with the extent of absorption.

![Graph](image)

**Fig. 1.** Mean serum concentrations of rifampin following a single oral dose of rifampin (300 mg) in period 1 (O) or period 2 (●). Values represent the mean±SE of 7 subjects.

However in nonlinear models of absorption, with mechanisms involving recycling of drugs and for drugs with long half-life, the use of total AUC can give erroneous and clinically irrelevant results since the area is mostly influenced by elimination and drug recycling. Calculation of total AUC in addition of prolonged sampling, is associated with problems of bioequivalence studies. Thus it has been suggested that partial AUCs are better indicators of bioequivalence of generic products than the total AUC. By comparing AUC₀ₐ with AUC₀₋ₐ in this study, it was found that the parameter of AUC₀ₐ is a better indicator of the extent of rifampin absorption than AUC₀₋ₐ (confidence interval of 0.97-1.12 versus 0.96-1.22). Other parameters, Cₘₐₓ and Tₘₐₓ from plasma and/or serum concentration-time profiles have been utilized as a measure of rate of absorption that give minimal information about the absorption rate and absorption process of the drug and depends heavily upon the sampling time schedule. These parameters are not well defined in the presence of multiple peaks or when the plasma concentration curve around the peak is flat (3). Tₘₐₓ being a discrete parameter and lack of statistical methods for its comparison is not sensitive enough for estimation of the absorption
rate, and therefore $C_{\text{max}}$ remains as only parameter that may be used for this purpose. Since it reflects only the extent of absorption, it is insensitive and nontopic in the assessment of absorption rate. It has been suggested that the incremental area under the drug level curve (AUC) representing 10-30% of the total AUC would be more sensitive than either $C_{\text{max}}$ or $T_{\text{max}}$ in differentiating rate of absorption of drugs due to differences in formulation (8). Endrenyi et al have indicated that calculation of the partial AUC until the earlier of the two contrasted peaks (test or reference product) is the most effective (11), and Chen has suggested that the choice of cut off point for bioequivalence comparisons depends on both the peak time of the drug concentration curve and the therapeutic use of the drug under study (3).

<p>| Table 1. Summary statistics of pharmacokinetic parameters after a single oral dose of rifampin (300 mg) |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Period 1</th>
<th>Period 2</th>
<th>90% confidence interval</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{\text{max}}$ (µg/ml)</td>
<td>4.27±1.11</td>
<td>4.25±0.68</td>
<td>0.82-1.25</td>
<td>0.608</td>
</tr>
<tr>
<td>AUC$_{0-\text{max}}$ (µg hr/ ml)</td>
<td>19.73±2.60</td>
<td>18.55±4.11</td>
<td>0.96-1.22</td>
<td>0.470</td>
</tr>
<tr>
<td>AUC$_{\text{inf}}$ (µg hr/ ml)</td>
<td>22.19±3.96</td>
<td>21.38±3.62</td>
<td>0.97-1.12</td>
<td>0.486</td>
</tr>
<tr>
<td>$C_{\text{max}}$/AUC$_{0-\text{max}}$ (1/hr)</td>
<td>0.22±0.04</td>
<td>0.23±0.04</td>
<td>0.77-1.14</td>
<td>0.511</td>
</tr>
<tr>
<td>$C_{\text{max}}$/AUC$_{\text{inf}}$ (1/hr)</td>
<td>0.19±0.03</td>
<td>0.20±0.04</td>
<td>0.82-1.14</td>
<td>0.888</td>
</tr>
<tr>
<td>AUC$_{\text{c,ref}}$ (µg/hr/ml)</td>
<td>4.17±2.32</td>
<td>3.58±2.21</td>
<td>0.77-2.71</td>
<td>0.378</td>
</tr>
<tr>
<td>AUC$_{\text{c,ref}}$ (µg/hr/ml)</td>
<td>7.23±2.43</td>
<td>6.93±3.10</td>
<td>0.78-1.50</td>
<td>0.750</td>
</tr>
</tbody>
</table>

According to table 1, 90% confidence interval for the mean $C_{\text{max}}$ ratio lies within the range of 0.82-1.25 and for $T_{\text{max}}$ of 0.90-1.72, which both of them are out of acceptable range. This result is in agreement with the above statement. AUC$_{0-\text{max}}$ and AUC$_{\text{inf}}$ have been also calculated for evaluation of the rate of absorption. The results of AUC$_{0-\text{max}}$ (confidence interval of 0.77-2.71) represent that this metric is very sensitive to variations of early stages in absorption phase, and in the case of rifampin in which a high intra- and inter-individual variation in the early phase of absorption have been observed, the results would be misleading in evaluation of bioequivalence. Calculation of AUC from 1.5 hr after $T_{\text{max}}$ (AUC$_{1.5}$) gave better confidence interval (0.78-1.50), which is not satisfying yet. $C_{\text{max}}$/AUC$_{\text{ref}}$ is recommended as a specific parameter for estimation of the absorption rate, because of its independence to the extent of absorption and its smaller variation than $C_{\text{max}}$. Bois (10) found that $C_{\text{max}}$/AUC$_{\text{ref}}$ with various scenarios involving two compartmental models is sensitive to measurement errors. However, Thatil et al. and Endrenyi (5) have demonstrated that $C_{\text{max}}$/AUC$_{\text{ref}}$ is generally superior to both $C_{\text{max}}$ and $C_{\text{max}}$/AUC$_{\text{ref}}$ for assessment of the equivalency of absorption rates.

Our study indicates that $C_{\text{max}}$/AUC in assessment of absorption rate is more suitable than $C_{\text{max}}$, when AUC$_{\text{ref}}$ has been used (confidence interval of 0.82-1.45). This ratio metric has smaller variation than $C_{\text{max}}$ (confidence interval of 0.82-1.5). The parameter $C_{\text{max}}$/AUC$_{\text{ref}}$ is more reliable than $C_{\text{max}}$/AUC$_{\text{ref}}$ (confidence interval of 0.77-1.14) for comparison of rifampin absorption ranges.

According to the results of this study it may be suggested that for rifampin and other class II drugs (14), AUC$_{\text{ref}}$ is a better indicator of absorption extent and $C_{\text{max}}$/AUC$_{\text{ref}}$ is more sensitive than $C_{\text{max}}$ and $T_{\text{max}}$ in evaluation of the absorption rate and partial area method is not recommended for evaluation of absorption rate in rifampin bioequivalence study.

ACKNOWLEDGMENTS

The authors wish to thank Alhavi Pharmaceutical Co. for financial support of this study.

REFERENCES


